Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Secondary structure transitions and aggregation induced in dynorphin neuropeptides by the detergent sodium dodecyl sulfate.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
2008 (English)In: Biochim Biophys Acta, ISSN 0006-3002, Vol. 1778, no 11, 2580-7 p.Article in journal (Refereed) Published
Abstract [en]

Dynorphins, endogeneous opioid neuropeptides, function as ligands to the opioid kappa receptors and also induce non-opioid effects in neurons, probably related to direct membrane interactions. We have characterized the structure transitions of dynorphins (big dynorphin, dynorphin A and dynorphin B) induced by the detergent sodium dodecyl sulfate (SDS). In SDS titrations monitored by circular dichroism, we observed secondary structure conversions of the peptides from random coil to alpha-helix with a highly aggregated intermediate. As determined by Fourier transform infrared spectroscopy, this intermediate exhibited beta-sheet structure for dynorphin B and big dynorphin. In contrast, aggregated dynorphin A was alpha-helical without considerable beta-sheet content. Hydrophobicity analysis indicates that the YGGFLRR motif present in all dynorphins is prone to be inserted in the membrane. Comparing big dynorphin with dynorphin A and dynorphin B, we suggest that the potent neurotoxicity of big dynorphin could be related to the combination of amino acid sequences and secondary structure propensities of dynorphin A and dynorphin B, which may generate a synergistic effect for big dynorphin membrane perturbing properties. The induced aggregated alpha-helix of dynorphin A is also correlated with membrane perturbations, whereas the beta-sheet of dynorphin B does not correlate with membrane perturbations.

Place, publisher, year, edition, pages
2008. Vol. 1778, no 11, 2580-7 p.
Identifiers
URN: urn:nbn:se:su:diva-14841ISI: 000261263500015PubMedID: 18694723OAI: oai:DiVA.org:su-14841DiVA: diva2:181361
Available from: 2008-11-05 Created: 2008-11-05 Last updated: 2011-01-10Bibliographically approved

Open Access in DiVA

No full text

Other links

PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=18694723&dopt=Citation

Search in DiVA

By author/editor
Barth, AndreasGräslund, Astrid
By organisation
Department of Biochemistry and Biophysics

Search outside of DiVA

GoogleGoogle Scholar

pubmed
urn-nbn

Altmetric score

pubmed
urn-nbn
Total: 24 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf