Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Of Bacteria and clouds: when microbial substances trigger cloud formation in Earth’s atmosphere
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
Show others and affiliations
2008 (English)In: American Geophysical Union Fall Meeting 2008, 2008Conference paper, Published paper (Refereed)
Abstract [en]

This presentation reports the discovery that substances produced by microorganisms might trigger the formation of cloud in the atmosphere, at least under certain conditions.

The Cloud Condensation Nuclei (CCN) efficiency of substances produced by microorganisms (bacteria, fungi, micro-algae …) that are common at Earth’s surface and in the oceans were studied. Their Köhler curves were determined experimentally by surface tension and osmometry measurements and found to have much lower critical supersaturations than any material studied so far, including inorganic salts.

The presence of these substances was evidenced in aerosols from four different origins (coastal, marine, temperate forest, and Amazonian forest) by LC/MS/MS analyses and by their unique signature on the surface tension. These substances lowered the surface tension of the aerosols below 40 mN/m, allowing them to be activated into cloud droplets before inorganic particles.

Microorganisms would thus be able to control cloud formation in Earth’s atmosphere under certain conditions. This would explain many previous observations such as correlations between algae bloom and cloud cover. Most importantly, this work identifies a potentially important component of Earth’s hydrological cycle and a new direct link between biosphere and climate.

Place, publisher, year, edition, pages
2008.
National Category
Meteorology and Atmospheric Sciences
Identifiers
URN: urn:nbn:se:su:diva-17435OAI: oai:DiVA.org:su-17435DiVA: diva2:183956
Available from: 2009-01-15 Created: 2009-01-15Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Ekström, SannaNozière, BarbaraAlsberg, Tomas
By organisation
Department of Applied Environmental Science (ITM)
Meteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 10 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf