Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
First direct measurements of the CCN properties of 2-methyltetrols and polyols
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
2008 (English)In: Geophysical Research Abstracts, 2008Conference paper, Published paper (Refereed)
Abstract [en]

2-methyltetrols and polyols have received a lot of attention in recent years. 2-methyltetrols have been found in aerosols in various regions are believed to be formed by the oxidation of isoprene. Polyols are produced by fungi and have been measured

in large concentrations in aerosols. The main reason of interest of both 2-methyltetrols and polyols as efficient cloud condensation nuclei (CCN) is due to their high solubility.

This presentation will report for the first time the experimental determination of complete Köhler curves for 2-methyltetrols (2-methylerythritol and 2-methylthreitol), C3 to C6 polyols (glycerol, erythritol, arabitol, and mannitol), and for comparison their

analogue di-acids (malonic acid, succinic acid and, adipic acid). The original Köhler equations were determined from osmolality and tensiometry measurements of the compounds both in water and salt solutions (sodium chloride and ammonium sulphate).

The results indicate that the polyols generally have similar CCN properties as the dicarboxylic acids. The critical supersaturation for aerosol particles with a 30 nm radius were: 2-methyltetrol; 0.68%, mannitol; 0.62%, arabitol; 0.60%, 2-methylerythritol;

0.57%, erythritol; 0.56%, glycerol; 0.53%, adipic acid; 0.52%, succinic acid; 0.49%, and malonic acid; 0.44%. Mixtures of salts had lower critical supersaturation than water solutions, especially for the polyols. One exception was 2-methylerythritol, which interestingly was less efficient as CCN in salt solutions.

The CCN efficiency of the polyols is believed to result mostly from their large water affinity, enforcing the Raoult effect, while organic acids lower the Kelvin effect. The very large solubility of polyols compared to the di-acids mean that they could positive effect in the initial phase of the droplet growth while the di-acids cannot. 2-methyltetrols were found to have both a Kelvin and a Raoult effect.

In addition, these results establish for the first time that the 3-dimensional structure of molecules can have an effect on their CCN properties. The two isomers of the 2-methyltetrols have significantly different CCN properties that are also influenced

oppositely in the presence of salts.

Place, publisher, year, edition, pages
2008.
National Category
Meteorology and Atmospheric Sciences
Identifiers
URN: urn:nbn:se:su:diva-17436OAI: oai:DiVA.org:su-17436DiVA: diva2:183957
Available from: 2009-01-15 Created: 2009-01-15Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Ekström, SannaNozière, BarbaraHansson, Hans Christen
By organisation
Department of Applied Environmental Science (ITM)
Meteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 20 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf