Change search
ReferencesLink to record
Permanent link

Direct link
Fast Large-Scale Reionization Simulations
Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, Department of Astronomy.
2008 (English)Other (Other academic)
Abstract [en]

We present an efficient method to generate large simulations of the Epoch of Reionization (EoR) without the need for a full 3-dimensional radiative transfer code. Large dark-matter-only simulations are post-processed to produce maps of the redshifted 21cm emission from neutral hydrogen. Dark matter haloes are embedded with sources of radiation whose properties are either based on semi-analytical prescriptions or derived from hydrodynamical simulations. These sources could either be stars or power-law sources with varying spectral indices. Assuming spherical symmetry, ionized bubbles are created around these sources, whose radial ionized fraction and temperature profiles are derived from a catalogue of 1-D radiative transfer experiments. In case of overlap of these spheres, photons are conserved by redistributing them around the connected ionized regions corresponding to the spheres. The efficiency with which these maps are created allows us to span the large parameter space typically encountered in reionization simulations. We compare our results with other, more accurate, 3-D radiative transfer simulations and find excellent agreement for the redshifts and the spatial scales of interest to upcoming 21cm experiments. We generate a contiguous observational cube spanning redshift 6 to 12 and use these simulations to study the differences in the reionization histories between stars and quasars. Finally, the signal is convolved with the LOFAR beam response and its effects are analyzed and quantified. Statistics performed on this mock data set shed light on possible observational strategies for LOFAR.

Place, publisher, year, edition, pages
2008. , 18 p.
, Arxiv, 0809.1326
URN: urn:nbn:se:su:diva-17598OAI: diva2:184119
Available from: 2009-01-19 Created: 2009-01-19Bibliographically approved

Open Access in DiVA

No full text

Other links
By organisation
Department of Astronomy

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 10 hits
ReferencesLink to record
Permanent link

Direct link