Change search
ReferencesLink to record
Permanent link

Direct link
Planetesimal Evolution in Circumbinary Gaseous Disks: A Hybrid Model
Stockholm University, Faculty of Science, Department of Astronomy.
2008 (English)In: The Astronomical Journal, Vol. 681, no 2, 1599-1608 p.Article in journal (Refereed) Published
Abstract [en]

We study the dynamics of planetesimals embedded in a circumbinary protoplanetary disk. A hybrid numerical approach is developed where the evolution of the gaseous component of the disk is computed with the hydrodynamical code FARGO while the planetesimal trajectories are computed with an N-body code. The local gas density and velocity derived from the hydrodynamical portion are used to calculate the drag force and the gravitational attraction of the disk on the planetesimals. We explore the effects of spiral density wave patterns and of the disk eccentricity, both excited by the binary tidal perturbations, on the dynamical evolution of planetesimal orbits. A new definition of osculating orbital elements is given to properly account for the gravitational attraction of the disk. The outcomes of the numerical simulations show that the pericenter alignment of the planetesimal orbits is a robust result. It occurs for different values of the binary eccentricity and surface density profiles of the disk. However, the pericenters are less collimated compared to early predictions based on codes adopting a stationary and axisymmetric approximation for the disk. In addition, the eccentricity values are higher and depend on the semimajor axis of the bodies. Both these effects favor higher relative velocities between colliding planetesimals, making accretion less likely than previously thought. Small 100 m size bodies (planetesimal precursors) have a very high inward drift rate that might lead to a high-density belt in the proximity of the inner border of the disk. Fast accretion into larger bodies might occur in this region.

Place, publisher, year, edition, pages
2008. Vol. 681, no 2, 1599-1608 p.
National Category
Astronomy, Astrophysics and Cosmology
URN: urn:nbn:se:su:diva-18363DOI: doi:10.1086/588423OAI: diva2:184886
Available from: 2009-01-25 Created: 2009-01-25 Last updated: 2011-01-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Thebault, Philippe
By organisation
Department of Astronomy
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 23 hits
ReferencesLink to record
Permanent link

Direct link