Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The inside pH determines rates of electron and proton transfer in vesicle-reconstituted cytochrome c oxidase.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
2007 (English)In: Biochimica et Biophysica Acta - Bioenergetics, ISSN 0005-2728, E-ISSN 1879-2650, Vol. 1767, no 5, 381-386 p.Article in journal (Refereed) Published
Abstract [en]

Cytochrome c oxidase is the terminal enzyme in the respiratory chains of mitochondria and many bacteria where it translocates protons across a membrane thereby maintaining an electrochemical proton gradient. Results from earlier studies on detergent-solubilized cytochrome c oxidase have shown that individual reaction steps associated with proton pumping display pH-dependent kinetics. Here, we investigated the effect of pH on the kinetics of these reaction steps with membrane-reconstituted cytochrome c oxidase such that the pH was adjusted to different values on the inside and outside of the membrane. The results show that the pH on the inside of the membrane fully determines the kinetics of internal electron transfers that are linked to proton pumping. Thus, even though proton release is rate limiting for these reaction steps (Salomonsson et al., Proc. Natl. Acad. Sci. USA, 2005, 102, 17624), the transition kinetics is insensitive to the outside pH (in the range 6–9.5).

Place, publisher, year, edition, pages
2007. Vol. 1767, no 5, 381-386 p.
Keyword [en]
Bacterial Proteins/chemistry/metabolism, Electron Transport Complex IV/chemistry/*metabolism, Electrons, Hydrogen-Ion Concentration, Kinetics, Protein Conformation, Protons, Rhodobacter sphaeroides/enzymology
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
URN: urn:nbn:se:su:diva-19211DOI: doi:10.1016/j.bbabio.2007.02.023ISI: 000246654200005PubMedID: 17466260OAI: oai:DiVA.org:su-19211DiVA: diva2:185735
Available from: 2007-10-23 Created: 2007-10-23 Last updated: 2010-07-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=17466260&dopt=Citation

Search in DiVA

By author/editor
Faxén, KristinaBrzezinski, Peter
By organisation
Department of Biochemistry and Biophysics
In the same journal
Biochimica et Biophysica Acta - Bioenergetics
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 23 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf