Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ribonucleotide reductase modularity: Atypical duplication of the ATP-cone domain in Pseudomonas aeruginosa.
Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
2006 (English)In: J Biol Chem, ISSN 0021-9258, Vol. 281, no 35, 25287-96 p.Article in journal (Other academic) Published
Abstract [en]

The opportunistic pathogen Pseudomonas aeruginosa, which causes serious nosocomial infections, is a gamma-proteobacterium that can live in many different environments. Interestingly P. aeruginosa encodes three ribonucleotide reductases (RNRs) that all differ from other well known RNRs. The RNR enzymes are central for de novo synthesis of deoxyribonucleotides and essential to all living cells. The RNR of this study (class Ia) is a complex of the NrdA protein harboring the active site and the allosteric sites and the NrdB protein harboring a tyrosyl radical necessary to initiate catalysis. P. aeruginosa NrdA contains an atypical duplication of the N-terminal ATP-cone, an allosteric domain that can bind either ATP or dATP and regulates the overall enzyme activity. Here we characterized the wild type NrdA and two truncated NrdA variants with precise N-terminal deletions. The N-terminal ATP-cone (ATP-c1) is allosterically functional, whereas the internal ATP-cone lacks allosteric activity. The P. aeruginosa NrdB is also atypical with an unusually short lived tyrosyl radical, which is efficiently regenerated in presence of oxygen as the iron ions remain tightly bound to the protein. The P. aeruginosa wild type NrdA and NrdB proteins form an extraordinarily tight complex with a suggested alpha4beta4 composition. An alpha2beta2 composition is suggested for the complex of truncated NrdA (lacking ATP-c1) and wild type NrdB. Duplication or triplication of the ATP-cone is found in some other bacterial class Ia RNRs. We suggest that protein modularity built on the common catalytic core of all RNRs plays an important role in class diversification within the RNR family.

Place, publisher, year, edition, pages
2006. Vol. 281, no 35, 25287-96 p.
Keyword [en]
Adenosine Triphosphate/*chemistry, Amino Acid Sequence, Catalytic Domain, Ions, Iron/chemistry, Kinetics, Molecular Sequence Data, Nucleotides/chemistry, Phylogeny, Protein Structure; Tertiary, Pseudomonas aeruginosa/*enzymology, Ribonucleotide Reductases/*chemistry, Sequence Homology; Amino Acid
Identifiers
URN: urn:nbn:se:su:diva-20334PubMedID: 16829681OAI: oai:DiVA.org:su-20334DiVA: diva2:186860
Available from: 2007-03-10 Created: 2007-03-10 Last updated: 2011-01-11Bibliographically approved

Open Access in DiVA

No full text

Other links

PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=16829681&dopt=Citation

Search in DiVA

By author/editor
Westman, MariAnnSahlin, MargaretaSjöberg, Britt-Marie
By organisation
Department of Molecular Biology and Functional Genomics

Search outside of DiVA

GoogleGoogle Scholar

pubmed
urn-nbn

Altmetric score

pubmed
urn-nbn
Total: 24 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf