Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
SegH and Hef: two novel homing endonucleases whose genes replace the mobC and mobE genes in several T4-related phages.
Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
2005 (English)In: Nucleic Acids Res, ISSN 1362-4962, Vol. 33, no 19, 6203-13 p.Article in journal (Other academic) Published
Abstract [en]

T4 contains two groups of genes with similarity to homing endonucleases, the seg-genes (similarity to endonucleases encoded by group I introns) containing GIY-YIG motifs and the mob-genes (similarity to mobile endonucleases) containing H-N-H motifs. The four seg-genes characterized to date encode homing endonucleases with cleavage sites close to their respective gene loci while none of the mob-genes have been shown to cleave DNA. Of 18 phages screened, only T4 was found to have mobC while mobE genes were found in five additional phages. Interestingly, three phages encoded a seg-like gene (hereby called segH) with a GIY-YIG motif in place of mobC. An additional phage has an unrelated gene called hef (homing endonuclease-like function) in place of the mobE gene. The gene products of both novel genes displayed homing endonuclease activity with cleavage site specificity close to their respective genes. In contrast to intron encoded homing endonucleases, both SegH and Hef can cleave their own DNA as well as DNA from phages without the genes. Both segH and mobE (and most likely hef) can home between phages in mixed infections. We discuss why it might be a selective advantage for phage freestanding homing endonucleases to cleave both HEG-containing and HEG-less genomes.

Place, publisher, year, edition, pages
2005. Vol. 33, no 19, 6203-13 p.
Keyword [en]
Amino Acid Sequence, Bacteriophage T4/*enzymology/*genetics, Base Sequence, DNA Transposable Elements, Endodeoxyribonucleases/*genetics/*metabolism, Genes; Viral, Molecular Sequence Data, Sequence Alignment
Identifiers
URN: urn:nbn:se:su:diva-20337PubMedID: 16257983OAI: oai:DiVA.org:su-20337DiVA: diva2:186863
Available from: 2007-03-10 Created: 2007-03-10 Last updated: 2011-01-12Bibliographically approved

Open Access in DiVA

No full text

Other links

PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=16257983&dopt=Citation

Search in DiVA

By author/editor
Nord, DavidSjöberg, Britt-Marie
By organisation
Department of Molecular Biology and Functional Genomics

Search outside of DiVA

GoogleGoogle Scholar

pubmed
urn-nbn

Altmetric score

pubmed
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf