References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Analyticity of layer potentials and $L^{2}$ solvability of boundary value problems for divergence form elliptic equations with complex $L^{\infty}$ coefficientsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true}); PrimeFaces.cw("SelectBooleanButton","widget_formSmash_j_idt185",{id:"formSmash:j_idt185",widgetVar:"widget_formSmash_j_idt185",onLabel:"Hide others and affiliations",offLabel:"Show others and affiliations"});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2007 (English)Other (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

2007. , 60 p.
##### National Category

Mathematical Analysis
##### Identifiers

URN: urn:nbn:se:su:diva-20728OAI: oai:DiVA.org:su-20728DiVA: diva2:187254
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
Available from: 2007-11-29 Created: 2007-11-29Bibliographically approved

We consider divergence form elliptic operators of the form $L=-\dv A(x)\nabla$, defined in $R^{n+1} = \{(x,t)\in R^n \times R \}$, $n \geq 2$, where the $L^{\infty}$ coefficient matrix $A$ is $(n+1)\times(n+1)$, uniformly elliptic, complex and $t$-independent. We show that for such operators, boundedness and invertibility of the corresponding layer potential operators on $L^2(\mathbb{R}^{n})=L^2(\partial\mathbb{R}_{+}^{n+1})$, is stable under complex, $L^{\infty}$ perturbations of the coefficient matrix. Using a variant of the $Tb$ Theorem, we also prove that the layer potentials are bounded and invertible on $L^2(\mathbb{R}^n)$ whenever $A(x)$ is real and symmetric (and thus, by our stability result, also when $A$ is complex, $\Vert A-A^0\Vert_{\infty}$ is small enough and $A^0$ is real, symmetric, $L^{\infty}$ and elliptic). In particular, we establish solvability of the Dirichlet and Neumann (and Regularity) problems, with $L^2$ (resp. $\dot{L}^2_1)$ data, for small complex perturbations of a real symmetric matrix. Previously, $L^2$ solvability results for complex (or even real but non-symmetric) coefficients were known to hold only for perturbations of constant matrices (and then only for the Dirichlet problem), or in the special case that the coefficients $A_{j,n+1}=0=A_{n+1,j}$, $1\leq j\leq n$, which corresponds to the Kato square root problem.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});