Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Transmission planning in an imperfectly competitive power sector with environmental externalities
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.ORCID iD: 0000-0001-7988-976X
University of Copenhagen, Copenhagen, Denmark.
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.ORCID iD: 0000-0003-1841-1310
Number of Authors: 32024 (English)In: Energy Economics, ISSN 0140-9883, E-ISSN 1873-6181, Vol. 134, article id 107610Article in journal (Refereed) Published
Abstract [en]

Policymakers face the challenge of integrating intermittent output from variable renewable energy (VRE). Even in a well-functioning power sector with flexible generation, producers’ incentives may not align with society’ swelfare-maximisation objective. At the same time, political pressure can obstruct policymakers from pricing damage from CO2 emissions according to its social costs. In facilitating decarbonisation, transmission planning will have to adapt to such economic and environmental distortions. Using a Stackelberg model of the Nordic power sector, we find that a first-best transmission-expansion plan involves better resource sharing between zones, which actually reduces the need for some VRE adoption. Next, we allow for departures from perfect competition and identify an extended transmission-expansion plan under market power by nuclear plants. By contrast, temporal arbitrage by hydro reservoirs does not necessitate transmission expansion beyond that of perfect competition because it incentivises sufficient VRE adoption using existing lines. Meanwhile, incomplete CO2 pricing under perfect competition requires a transmission plan that matches hydro-rich zones with sites for VRE adoption. However, since incomplete CO2 pricing leaves fossil-fuelled generation economically viable, it reduces the leverage of strategic producers, thereby catalysing less (more) extensive transmission expansionunder market power by nuclear (hydro) plants.

Place, publisher, year, edition, pages
2024. Vol. 134, article id 107610
Keywords [en]
Electricity markets, Environmental policy, Game theory, Hydropower, Market power, Transmission planning
National Category
Information Systems
Research subject
Computer and Systems Sciences
Identifiers
URN: urn:nbn:se:su:diva-231319DOI: 10.1016/j.eneco.2024.107610Scopus ID: 2-s2.0-85193630272OAI: oai:DiVA.org:su-231319DiVA, id: diva2:1872814
Available from: 2024-06-18 Created: 2024-06-18 Last updated: 2025-02-22Bibliographically approved
In thesis
1. Storage, Transmission, and Renewable Interactions in the Nordic Grid
Open this publication in new window or tab >>Storage, Transmission, and Renewable Interactions in the Nordic Grid
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The deep decarbonisation of the power sector emphasises the urgent need for the increased integration of variable renewable energy (VRE) sources such as wind and solar power. While VRE provides emission-free and cost-effective energy in its operations, its intermittent production necessitates the utilisation of variation-management mechanisms, such as storage, transmission, and demand-side response. In this context, the Nordic countries aim for strategic leadership in navigating the complexities of the sustainable-energy transition by leveraging existing flexible capacities, particularly hydro reservoirs. 

However, flexible producers, such as hydro capacities, may have incentives that differ from those of society in a deregulated electricity industry such as that of the Nordic region. Large power companies may have enough flexible capacity to manipulate electricity prices through their own generation output. Empirical analyses of the Nordic electricity market based on data from 2011 to 2013, for instance, have identified signs of market power exercised by hydro and fossil-fuelled producers in Swedish price zones. This market power could increase in a future power system with higher VRE output that needs more flexibility. Furthermore, the dynamics introduced by CO2 pricing, combined with the emergence of prosumers, who are agents engaged in both electricity consumption and generation, may bolster firms’ scope for strategic behaviour, thereby exacerbating unfavourable economic and environmental outcomes. 

Simultaneously, policymakers face the formidable challenge of integrating intermittent output from VRE, even in a well-functioning power sector with flexible generation. Focusing on transmission planning is critical for integrat- ing VRE effectively. Proactive transmission expansion allows transmission system operators (TSOs) to balance supply and demand across regions with complementary VRE profiles, reducing reliance on hydropower producers who might exert market power. However, the misalignment of incentives between producers and society, compounded by political constraints that prevent the accurate pricing of CO2 emissions according to social costs, complicates the challenging landscape of decarbonisation. Therefore, transmission planning must be proactively recalibrated to account for economic and environmental distortions to mitigate welfare losses from imperfect competition and incomplete CO2 pricing. 

This thesis utilises a game-theoretic framework to capture the behavioural dynamics of agents and the optimal transmission-expansion strategy in a VRE-dominated power system. Such an approach reflects the complex interactions between firms’ strategic incentives and climate-policy imperatives, thereby en- abling a thorough understanding of the complex challenges of transitioning to a decarbonised power system. 

Place, publisher, year, edition, pages
Stockholm: Department of Computer and Systems Sciences, Stockholm University, 2025. p. 68
Series
Report Series / Department of Computer & Systems Sciences, ISSN 1101-8526 ; 25-004
Keywords
Electricity markets, Environmental policy, Game theory, Hydropower, Market power, Transmission planning
National Category
Energy Systems Power Systems and Components Economics
Research subject
Computer and Systems Sciences
Identifiers
urn:nbn:se:su:diva-239743 (URN)978-91-8107-132-0 (ISBN)978-91-8107-133-7 (ISBN)
Public defence
2025-04-29, L30, Borgarfjordsgatan 12 (NOD Building), Campus Kista, and online via Zoom, public link is available at the department website, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2025-04-04 Created: 2025-02-22 Last updated: 2025-03-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Hassanzadeh Moghimi, FarzadSiddiqui, Afzal

Search in DiVA

By author/editor
Hassanzadeh Moghimi, FarzadSiddiqui, Afzal
By organisation
Department of Computer and Systems Sciences
In the same journal
Energy Economics
Information Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 52 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf