Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nonlinear Eigenvalue Problems for Even Functionals
Stockholm University, Faculty of Science, Department of Mathematics. Stockholm University, Faculty of Science, Department of Mathematics.
2007 (English)In: Applicable Analysis: an international journal, ISSN 1563-504X (electronic) 0003-6811 (paper), Vol. 86, no 7, 829-849 p.Article in journal (Refereed) Published
Abstract [en]

Let $H$ be a Hilbert space and let $g\in C^1(H,\mathbb R)$ be an even Fréchet differentiable functional with completely continuous derivative. We introduce maximin values

$\sigma_k(t)$ which are critical values of $g$ restricted to the sphere

$$ S_t = \left\{ u\in H;\; \frac{1}{2} \|u\|^2 = t \right\}$$

and show that the functions $\sigma_k(t)$ have right and left derivatives and that $\sigma_{k\pm}'(t)$ are eigenvalues of g', i.e. there exist $u_k^{\pm}\in S_t$ such that

$$ g'(u_k^\pm) = \sigma_{k\pm}'(t) u_k^{\pm}.

Applications of the result are given to semilinear elliptic equations.

Place, publisher, year, edition, pages
2007. Vol. 86, no 7, 829-849 p.
Keyword [en]
nonlinear eigenvalue problem, Krasnoselskii genus, elliptic semilinear equations.
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:su:diva-22159DOI: doi:10.1080/00036810701460503ISI: 000250334600004OAI: oai:DiVA.org:su-22159DiVA: diva2:188686
Available from: 2007-12-19 Created: 2007-12-19 Last updated: 2011-01-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Department of Mathematics
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf