Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Redox characteristics of a de novo quinone protein.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
2007 (English)In: J Phys Chem B, ISSN 1520-6106, Vol. 111, no 13, 3488-95 p.Article in journal (Refereed) Published
Abstract [en]

The electrochemistry of 2,6-dimethylbenzoquinone (DMBQ) has been characterized for three different systems: DMBQ freely solvated in aqueous buffer; DMBQ bound to a neutral, blocked cysteine (N-acetyl-L-cysteine methyl ester) and the resulting DMBQ-bCys compound solvated in aqueous buffer; and DMBQ bound to a small model protein denoted alpha(3)C. The goal of this study is to detect and characterize differences in the redox properties of the protein-ligated DMBQ relative to the solvated quinones. The alpha(3)C protein used here is a tryptophan-32 to cysteine-32 variant of the structurally defined alpha(3)W de novo protein (Dai et al. J. Am. Chem. Soc. 2002, 124, 10952-10953). The properties of alpha(3)C were recently described (Hay et al. Biochemistry 2005, 44, 11891-11902). DMBQ was covalently bound to bCys and alpha(3)C through a sulfur substitution reaction with the cysteine thiol. In contrast to the solvated DMBQ and DMBQ-bCys compounds, diffusion controlled electrochemistry of DMBQ-alpha(3)C showed well-behaved and fully reversible n = 2 oxidation/reduction with a peak separation of approximately 30 mV between pH 5 and 9. DMBQ-alpha(3)C could also be immobilized on a gold electrode modified with a self-assembled monolayer of 3-mercaptopropionoic acid, allowing the measurement, by cyclic voltammetry, of an apparent rate of electron transfer of 22 s(-1). The (cysteine) sulfur substitution significantly lowers one of the hydroquinone pKA's from 10.4 in DMBQ to 6.8 in DMBQ-bCys. This pKA is slightly elevated in DMBQ-alpha(3)C to 7.0 and the E1/2 at pH 7.0 is raised by 110 mV from +190 mV in DMBQ-bCys to +297 mV in DMBQ-alpha(3)C.

Place, publisher, year, edition, pages
2007. Vol. 111, no 13, 3488-95 p.
Identifiers
URN: urn:nbn:se:su:diva-22321ISI: 000245260500024PubMedID: 17388486OAI: oai:DiVA.org:su-22321DiVA: diva2:188848
Available from: 2007-06-11 Created: 2007-06-11 Last updated: 2011-01-11Bibliographically approved

Open Access in DiVA

No full text

Other links

PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=17388486&dopt=Citation

Search in DiVA

By author/editor
Westerlund, Kristina
By organisation
Department of Biochemistry and Biophysics

Search outside of DiVA

GoogleGoogle Scholar

pubmed
urn-nbn

Altmetric score

pubmed
urn-nbn
Total: 33 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf