Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
In vitro and in vivo methods to study protein import into plant mitochondria.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. (E. Glaser)
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. (E. Glaser)
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. (E. Glaser)
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. (E. Glaser)
2007 (English)In: Methods Mol Biol, ISSN 1064-3745, Vol. 390, 131-50 p.Article in journal (Refereed) Published
Abstract [en]

Plant mitochondria contain about 1000 proteins, 90-99% of which in different plant species are nuclear encoded, synthesized on cytosolic polyribosomes, and imported into the organelle. Most of the nuclear-encoded proteins are synthesized as precursors containing an N-terminal extension called a presequence or targeting peptide that directs the protein to the mitochondria. Here we describe in vitro and in vivo methods to study mitochondrial protein import in plants. In vitro synthesized precursor proteins can be imported in vitro into isolated mitochondria (single organelle import). However, missorting of chloroplast precursors in vitro into isolated mitochondria has been observed. A novel dual import system for simultaneous import of proteins into isolated mitochondria and chloroplasts followed by reisolation of the organelles is superior over the single import system as it abolishes the mistargeting. Precursor proteins can also be imported into the mitochondria in vivo using an intact cellular system. In vivo approaches include import of transiently expressed fusion constructs containing a presequence or a full-length precursor protein fused to a reporter gene, most commonly the green fluorescence protein (GFP) in protoplasts or in an Agrobacterium-mediated system in intact tobacco leaves.

Place, publisher, year, edition, pages
2007. Vol. 390, 131-50 p.
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
URN: urn:nbn:se:su:diva-22499PubMedID: 17951685OAI: oai:DiVA.org:su-22499DiVA: diva2:189026
Available from: 2007-12-21 Created: 2007-12-21 Last updated: 2011-01-11Bibliographically approved

Open Access in DiVA

No full text

Other links

PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=17951685&dopt=Citation

Search in DiVA

By author/editor
Glaser, Elzbieta
By organisation
Department of Biochemistry and Biophysics
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

Search outside of DiVA

GoogleGoogle Scholar

pubmed
urn-nbn

Altmetric score

pubmed
urn-nbn
Total: 49 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf