Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Density Functional Study of a Biomimetic Non-Heme Iron Catalyst: Insights into Alkane Hydroxylation and Olefin Oxidation by a Formally HO-Fe(V)=O Oxidant
Stockholm University, Faculty of Science, Department of Physics.
Stockholm University, Faculty of Science, Department of Physics.
Stockholm University, Faculty of Science, Department of Physics.
2004 (English)In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 11, no 2, 692-705 p.Article in journal (Refereed) Published
Abstract [en]

The reactivity of [HO(tpa)FeVO] (TPA=tris(2-pyridylmethyl)amine), derived from OO bond heterolysis of its [H2O(tpa)FeIIIOOH] precursor, was explored by means of hybrid density functional theory. The mechanism for alkane hydroxylation by the high-valent iron–oxo species invoked as an intermediate in Fe(tpa)/H2O2 catalysis was investigated. Hydroxylation of methane and propane by HOFeVO was studied by following the rebound mechanism associated with the heme center of cytochrome P450, and it is demonstrated that this species is capable of stereospecific alkane hydroxylation. The mechanism proposed for alkane hydroxylation by HOFeVO accounts for the experimentally observed incorporation of solvent water into the products. An investigation of the possible hydroxylation of acetonitrile (i.e., the solvent used in the experiments) shows that the activation energy for hydrogen-atom abstraction by HOFeVO is rather high and, in fact, rather similar to that of methane, despite the similarity of the HCH2CN bond strength to that of the secondary CH bond in propane. This result indicates that the kinetics of hydrogen-atom abstraction are strongly affected by the cyano group and rationalizes the lack of experimental evidence for solvent hydroxylation in competition with that of substrates such as cyclohexane.

Place, publisher, year, edition, pages
2004. Vol. 11, no 2, 692-705 p.
Keyword [en]
density functional calculations, homogeneous catalysis, hydroxylation, iron
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-22679DOI: 10.1002/chem.200400383OAI: oai:DiVA.org:su-22679DiVA: diva2:189255
Available from: 2004-04-15 Created: 2004-04-15 Last updated: 2017-12-13Bibliographically approved
In thesis
1. Theoretical studies of mononuclear non-heme iron active sites
Open this publication in new window or tab >>Theoretical studies of mononuclear non-heme iron active sites
2004 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The quantum chemical investigations presented in this thesis use hybrid density functional theory to shed light on the catalytic mechanisms of mononuclear non-heme iron oxygenases, accommodating a ferrous ion in their active sites. More specifically, the dioxygen activation process and the subsequent oxidative reactions in the following enzymes were studied: tetrahydrobiopterin-dependent hydroxylases, naphthalene 1,2-dioxygenase and α-ketoglutarate-dependent enzymes. In light of many experimental efforts devoted to the functional mimics of non-heme iron oxygenases, the reactivity of functional analogues was also examined.

The computed energetics and the available experimental data served to assess the feasibility of the reaction mechanisms investigated. Dioxygen activation in tetrahydrobiopterin- and α-ketoglutarate-dependent enzymes were found to involve a high-valent iron-oxo species, which was then capable of substrate hydroxylation. In the case of naphthalene 1,2-dioxygenase, the reactivity of an iron(III)-hydroxperoxo species toward the substrate was investigated and compared to the biomimetic counterpart.

Place, publisher, year, edition, pages
Stockholm: Fysikum, 2004. 86 p.
Keyword
quantum chemistry, enzyme catalysis, iron enzymes
National Category
Theoretical Chemistry
Identifiers
urn:nbn:se:su:diva-103 (URN)91-7265-857-6 (ISBN)
Public defence
2004-05-07, sal FA32, AlbaNova universitetscentrum, Roslagstullsbacken 21, Stockholm, 10:00
Opponent
Supervisors
Available from: 2004-04-15 Created: 2004-04-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Blomberg, Margareta R. A.Siegbahn, Per E. M.
By organisation
Department of Physics
In the same journal
Chemistry - A European Journal
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 84 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf