Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sequence properties of the 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii membranes: Recognition of a large group of lipid glycosyltransferases in eubacteria and archaea
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Show others and affiliations
2001 (English)In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 276, no 25, 22056-22063 p.Article in journal (Refereed) Published
Abstract [en]

Synthesis of the nonbilayer-prone α-monoglucosyldiacylglycerol (MGlcDAG) is crucial for bilayer packing properties and the                     lipid surface charge density in the membrane ofAcholeplasma laidlawii. The gene for the responsible, membrane-bound glucosyltransferase (alMGS) (EC 2.4.1.157) was sequenced and functionally cloned in Escherichia coli, yielding MGlcDAG in the recombinants. Similar amino acid sequences were encoded in the genomes of several Gram-positive                     bacteria (especially pathogens), thermophiles, archaea, and a few eukaryotes. All of these contained the typical EX7E catalytic motif of the CAZy family 4 of α-glycosyltransferases. The synthesis of MGlcDAG by a close sequence analog from                      Streptococcus pneumoniae (spMGS) was verified by polymerase chain reaction cloning, corroborating a connection between sequence and functional similarity                     for these proteins. However, alMGS and  spMGS varied in dependence on anionic phospholipid activators phosphatidylglycerol                     and cardiolipin, suggesting certain regulatory differences. Fold predictions strongly indicated a similarity for alMGS (and                     spMGS) with the two-domain structure of the E. coli MurG cell envelope glycosyltransferase and several amphipathic membrane-binding segments in various proteins. On the basis                     of this structure, the alMGS sequence charge distribution, and anionic phospholipid dependence, a model for the bilayer surface                     binding and activity is proposed for this regulatory enzyme.

Place, publisher, year, edition, pages
2001. Vol. 276, no 25, 22056-22063 p.
National Category
Biochemistry and Molecular Biology
Identifiers
URN: urn:nbn:se:su:diva-23039DOI: 10.1074/jbc.M102576200ISI: 000169412700011OAI: oai:DiVA.org:su-23039DiVA: diva2:189955
Available from: 2006-11-16 Created: 2006-11-16 Last updated: 2017-12-13Bibliographically approved
In thesis
1. Synthesis and protein curing abilities of membrane glycolipids
Open this publication in new window or tab >>Synthesis and protein curing abilities of membrane glycolipids
2006 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

There are many types of membrane lipids throughout Nature. Still little is known about synthesizing pathways and how different lipids affect the embedded membrane proteins. The most common lipids are glycolipids since they dominate plant green tissue. Glycolipids also exist in mammal cells as well as in most Gram-positive bacteria. Glycosyltransferases (GTs) catalyze the final enzymatic steps for these glycolipids. In the bacteria Acholeplasma laidlawii and Streptococcus pneumonie and in the plant Arabidopsis thaliana, GTs for mono-/di-glycosyl-diacylglycerol (-DAG) are suggested to be regulated to keep a certain membrane curvature close to a bilayer/nonbilayer phase transition. The monoglycosylDAGs are nonbilayer-prone with small headgroups, hence by themselves they will not form bilayer structures.

Here we have determined the genes encoding the main glycolipids of A. laidlawii and S. pneumonie. We have also shown that these GTs belong to a large enzyme group widely spread in Nature, and that all four enzymes are differently regulated by membrane lipids. The importance of different lipid properties were traced in a lipid mutant of Escherichia coli lacking the major (75 %), nonbilayer-prone/zwitterionic, lipid phosphatidylethanolamine. Introducing the genes for the GTs of A. laidlawii and two analogous genes from A. thaliana yielded new strains containing 50 percent of glyco-DAG lipids. The monoglyco-DAG strains contain significant amounts of nonbilayer-prone lipids while the diglyco-DAG strains contain no such lipids. Comparing these new strains for viability and the state of membrane-associated functions made it possible to connect different functions to certain lipid properties. In summary, a low surface charge density of anionic lipids is important in E.coli membranes, but this fails to be supportive if the diluting species have a too large headgroup. This indicates that a certain magnitude of the curvature stress is crucial for the membrane bilayer in vivo.

Place, publisher, year, edition, pages
Stockholm: Institutionen för biokemi och biofysik, 2006. 48 p.
Keyword
membrane, lipids, glycolipids, nonbilayer-prone
National Category
Biochemistry and Molecular Biology
Identifiers
urn:nbn:se:su:diva-1361 (URN)91-7155-351-7 (ISBN)
Public defence
2006-12-15, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 12 A, Stockholm, 10:00
Opponent
Supervisors
Available from: 2006-11-16 Created: 2006-11-16Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Department of Biochemistry and Biophysics
In the same journal
Journal of Biological Chemistry
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 33 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf