Change search
ReferencesLink to record
Permanent link

Direct link
Bilayer forming Diglucosyl- and Digalactosyl-diacylglycerol are not exchangeable supporting membrane-associated processes in Escherichia coli
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Show others and affiliations
Manuscript (Other academic)
URN: urn:nbn:se:su:diva-23042OAI: diva2:189958
Part of urn:nbn:se:su:diva-1361Available from: 2006-11-16 Created: 2006-11-16 Last updated: 2010-01-13Bibliographically approved
In thesis
1. Synthesis and protein curing abilities of membrane glycolipids
Open this publication in new window or tab >>Synthesis and protein curing abilities of membrane glycolipids
2006 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

There are many types of membrane lipids throughout Nature. Still little is known about synthesizing pathways and how different lipids affect the embedded membrane proteins. The most common lipids are glycolipids since they dominate plant green tissue. Glycolipids also exist in mammal cells as well as in most Gram-positive bacteria. Glycosyltransferases (GTs) catalyze the final enzymatic steps for these glycolipids. In the bacteria Acholeplasma laidlawii and Streptococcus pneumonie and in the plant Arabidopsis thaliana, GTs for mono-/di-glycosyl-diacylglycerol (-DAG) are suggested to be regulated to keep a certain membrane curvature close to a bilayer/nonbilayer phase transition. The monoglycosylDAGs are nonbilayer-prone with small headgroups, hence by themselves they will not form bilayer structures.

Here we have determined the genes encoding the main glycolipids of A. laidlawii and S. pneumonie. We have also shown that these GTs belong to a large enzyme group widely spread in Nature, and that all four enzymes are differently regulated by membrane lipids. The importance of different lipid properties were traced in a lipid mutant of Escherichia coli lacking the major (75 %), nonbilayer-prone/zwitterionic, lipid phosphatidylethanolamine. Introducing the genes for the GTs of A. laidlawii and two analogous genes from A. thaliana yielded new strains containing 50 percent of glyco-DAG lipids. The monoglyco-DAG strains contain significant amounts of nonbilayer-prone lipids while the diglyco-DAG strains contain no such lipids. Comparing these new strains for viability and the state of membrane-associated functions made it possible to connect different functions to certain lipid properties. In summary, a low surface charge density of anionic lipids is important in E.coli membranes, but this fails to be supportive if the diluting species have a too large headgroup. This indicates that a certain magnitude of the curvature stress is crucial for the membrane bilayer in vivo.

Place, publisher, year, edition, pages
Stockholm: Institutionen för biokemi och biofysik, 2006. 48 p.
membrane, lipids, glycolipids, nonbilayer-prone
National Category
Biochemistry and Molecular Biology
urn:nbn:se:su:diva-1361 (URN)91-7155-351-7 (ISBN)
Public defence
2006-12-15, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 12 A, Stockholm, 10:00
Available from: 2006-11-16 Created: 2006-11-16Bibliographically approved

Open Access in DiVA

No full text

By organisation
Department of Biochemistry and Biophysics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 24 hits
ReferencesLink to record
Permanent link

Direct link