CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt156",{id:"formSmash:upper:j_idt156",widgetVar:"widget_formSmash_upper_j_idt156",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt157_j_idt159",{id:"formSmash:upper:j_idt157:j_idt159",widgetVar:"widget_formSmash_upper_j_idt157_j_idt159",target:"formSmash:upper:j_idt157:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Topics in geometry, analysis and inverse problemsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2003 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Matematiska institutionen , 2003. , 123 p.
##### Keyword [en]

Laurent series, Harnack curves, differential equations, tomography
##### National Category

Algebra and Logic
##### Identifiers

URN: urn:nbn:se:su:diva-15ISBN: 91-7265-738-3 (print)OAI: oai:DiVA.org:su-15DiVA: diva2:190169
##### Public defence

2003-10-10, sal 14, hus 5, Kräftriket, Stockholm, 10:00
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt449",{id:"formSmash:j_idt449",widgetVar:"widget_formSmash_j_idt449",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt456",{id:"formSmash:j_idt456",widgetVar:"widget_formSmash_j_idt456",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt462",{id:"formSmash:j_idt462",widgetVar:"widget_formSmash_j_idt462",multiple:true});
Available from: 2003-10-02 Created: 2003-10-02Bibliographically approved
##### List of papers

The thesis consists of three independent parts.

Part I: Polynomial amoebas

We study the amoeba of a polynomial, as de ned by Gelfand, Kapranov and Zelevinsky. A central role in the treatment is played by a certain convex function which is linear in each complement component of the amoeba, which we call the Ronkin function. This function is used in two di erent ways. First, we use it to construct a polyhedral complex, which we call a spine, approximating the amoeba. Second, the Monge-Ampere measure of the Ronkin function has interesting properties which we explore. This measure can be used to derive an upper bound on the area of an amoeba in two dimensions. We also obtain results on the number of complement components of an amoeba, and consider possible extensions of the theory to varieties of codimension higher than 1.

Part II: Differential equations in the complex plane

We consider polynomials in one complex variable arising as eigenfunctions of certain differential operators, and obtain results on the distribution of their zeros. We show that in the limit when the degree of the polynomial approaches innity, its zeros are distributed according to a certain probability measure. This measure has its support on the union of nitely many curve segments, and can be characterized by a simple condition on its Cauchy transform.

Part III: Radon transforms and tomography

This part is concerned with different weighted Radon transforms in two dimensions, in particular the problem of inverting such transforms. We obtain stability results of this inverse problem for rather general classes of weights, including weights of attenuation type with data acquisition limited to a 180 degrees range of angles. We also derive an inversion formula for the exponential Radon transform, with the same restriction on the angle.

1. Stratication des espaces de polynômes de Laurent et structure de leurs amibes.$(function(){PrimeFaces.cw("OverlayPanel","overlay190164",{id:"formSmash:j_idt498:0:j_idt502",widgetVar:"overlay190164",target:"formSmash:j_idt498:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Amoebas, Monge-Ampère measures, and triangulations of the Newton polytope.$(function(){PrimeFaces.cw("OverlayPanel","overlay190165",{id:"formSmash:j_idt498:1:j_idt502",widgetVar:"overlay190165",target:"formSmash:j_idt498:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Amoebas of maximal area.$(function(){PrimeFaces.cw("OverlayPanel","overlay190166",{id:"formSmash:j_idt498:2:j_idt502",widgetVar:"overlay190166",target:"formSmash:j_idt498:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. On polynomial eigenfunctions for a class of differential operators.$(function(){PrimeFaces.cw("OverlayPanel","overlay190167",{id:"formSmash:j_idt498:3:j_idt502",widgetVar:"overlay190167",target:"formSmash:j_idt498:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. An explicit inversion formula for the exponential Radon transform using data from 180˚$(function(){PrimeFaces.cw("OverlayPanel","overlay190168",{id:"formSmash:j_idt498:4:j_idt502",widgetVar:"overlay190168",target:"formSmash:j_idt498:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1166",{id:"formSmash:j_idt1166",widgetVar:"widget_formSmash_j_idt1166",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1219",{id:"formSmash:lower:j_idt1219",widgetVar:"widget_formSmash_lower_j_idt1219",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1220_j_idt1222",{id:"formSmash:lower:j_idt1220:j_idt1222",widgetVar:"widget_formSmash_lower_j_idt1220_j_idt1222",target:"formSmash:lower:j_idt1220:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});