Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Extractable organic compounds in polyurethane foam with special reference to aromatic amines and derivatives thereof
Stockholm University, Faculty of Science, Department of Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Analytical Chemistry.
2004 (English)In: Analytica Chimica Acta, ISSN 0003-2670, E-ISSN 1873-4324, Vol. 510, no 1, 109-119 p.Article in journal (Refereed) Published
Abstract [en]

Methods for determination of aromatic amines and related compounds in flexible toluene diisocyanate (TDI)-based polyurethane (PUR) foam were investigated. The foam was extracted using 0.1% (w/v) aqueous acetic acid (HAc). Extraction solutions were analysed and aromatic amines were determined as ethyl chloroformate (Et) and pentafluoropropionic acid anhydride (PFPA) derivatives. The determinations were performed using liquid chromatography (LC) and mass spectrometry (MS) detection with electrospray ionisation (ESI) or gas chromatography (GC)-MS with chemical ionisation monitoring negative ions (NCI). The Et derivatives were determined using LC-ESI+-MS with detection limit of 2 pg of toluenediamine (TDA). The PFPA derivatives were determined using LC-ESI--MS or GC-NCI-MS with detection limits of 0.1 and 0.02 pg of TDA, respectively. Using trideuterium labelled TDA as internal standard, linear calibration curves were obtained in the range of 0.01-0.50 mug ml(-1) (n = 7), with correlation coefficients >0.999. When plotting calibration curves for TDA-PFPA derivatives determined using LC-MS against TDA-PFPA using GC-MS and TDA-Et using LC-MS, linear curves were obtained. The relative standard deviation (R.S.D.) for determination of TDA in foam extraction solutions were 13%. LC-MS determination of PFPA derivatives was more selective, as compared to LC-MS of Et derivatives.

In foam extraction solutions, 2,4- and 2,6-TDA, several isomers of methylenedianiline (MDA) and dimers of TDA/TDI were observed. 2,4-TDA and 4,4'-MDA are possible human carcinogens. Hydrolysis of the extraction solution revealed a large pool of TDA/TDI compounds and oligomers. The concentration of TDA in foam was affected by the extraction media, temperature and duration. The choice of derivatisation procedure also affected the determination of TDA. In extraction solutions from six different commercially available flexible foam qualities 2,4- and 2,6-TDA were found in the range of 0-7 and 0-6 mug g(-1) foam, respectively. When flexible foam was heated, considerable higher concentrations of TDA were observed.

Place, publisher, year, edition, pages
2004. Vol. 510, no 1, 109-119 p.
Keyword [en]
polyurethane; PUR; toluenediamine; TDA; LC-MS
National Category
Analytical Chemistry
Research subject
Analytical Chemistry
Identifiers
URN: urn:nbn:se:su:diva-23250DOI: 10.1016/j.aca.2003.12.063Archive number: 000220621400016OAI: oai:DiVA.org:su-23250DiVA: diva2:190907
Available from: 2004-08-20 Created: 2004-08-20 Last updated: 2013-06-19Bibliographically approved
In thesis
1. Isocyanates and Amines – Sampling and Analytical Procedures
Open this publication in new window or tab >>Isocyanates and Amines – Sampling and Analytical Procedures
2004 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis covers sampling and analytical procedures for isocyanates (R-NCO) and amines (R-NH2), two kinds of chemicals frequently used in association with the polymeric material polyurethane (PUR). Exposure to isocyanates may result in respiratory disorders and dermal sensitisation, and they are one of the main causes of occupational asthma. Several of the aromatic diamines associated with PUR production are classified as suspected carcinogens. Hence, the presence of these chemicals in different exposure situations must be monitored.

In the context of determining isocyanates in air, the methodologies included derivatisation with the reagent di-n-butylamine (DBA) upon collection and subsequent determination using liquid chromatography (LC) and mass spectrometric detection (MS). A user-friendly solvent-free sampler for collection of airborne isocyanates was developed as an alternative to a more cumbersome impinger-filter sampling technique. The combination of the DBA reagent together with MS detection techniques revealed several new exposure situations for isocyanates, such as isocyanic acid during thermal degradation of PUR and urea-based resins. Further, a method for characterising isocyanates in technical products used in the production of PUR was developed. This enabled determination of isocyanates in air for which pure analytical standards are missing. Tandem MS (MS/MS) determination of isocyanates in air below 10-6 of the threshold limit values was achieved.

As for the determination of amines, the analytical methods included derivatisation into pentafluoropropionic amide or ethyl carbamate ester derivatives and subsequent MS analysis. Several amines in biological fluids, as markers of exposure for either the amines themselves or the corresponding isocyanates, were determined by LC-MS/MS at amol level. In aqueous extraction solutions of flexible PUR foam products, toluene diamine and related compounds were found.

In conclusion, this thesis demonstrates the usefulness of well characterised analytical procedures and techniques for determination of hazardous compounds. Without reliable and robust methodologies there is a risk that exposure levels will be underestimated or, even worse, that relevant compounds will be completely missed.

Place, publisher, year, edition, pages
Stockholm: Institutionen för analytisk kemi, 2004. 65 p.
Keyword
Isocyanates, Amines, Polyurethane, Air sampling, Industrial hygiene, Mass spectrometry, Liquid chromatography, Chemiluminescence
National Category
Analytical Chemistry
Identifiers
urn:nbn:se:su:diva-204 (URN)91-7265-917-3 (ISBN)
Public defence
2004-09-10, Vita salongen, Hässleholms kulturhus, Järnvägsgatan 23, Hässleholm, 10:00
Opponent
Supervisors
Available from: 2004-08-20 Created: 2004-08-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Karlsson, DanielDalene, MarianneSkarping, Gunnar
By organisation
Department of Analytical Chemistry
In the same journal
Analytica Chimica Acta
Analytical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 385 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf