Change search
ReferencesLink to record
Permanent link

Direct link
Evaluation of Geometric Accuracy and Image Quality of an On-Board Imager (OBI)
Stockholm University, Faculty of Science, Medical Radiation Physics (together with KI).
2007 (English)Independent thesis Basic level (professional degree), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

In this project several tests were performed to evaluate the performance of an On-Board Imager® (OBI) mounted on a clinical linear accelerator. The measurements were divided into three parts; geometric accuracy, image registration and couch shift accuracy, and image quality. A cube phantom containing a radiation opaque marker was used to study the agreement with treatment isocenter for both kV-images and cone-beam CT (CBCT) images. The long term stability was investigated by acquiring frontal and lateral kV images twice a week over a 3 month period. Stability in vertical and longitudinal robotic arm motion as well as the stability of the center-of-rotation was evaluated. Further, the agreement of kV image and CBCT center with MV image center was examined.

A marker seed phantom was used to evaluate and compare the three applications in image registration; 2D/2D, 2D/3D and 3D/3D. Image registration using kV-kV image sets were compared with MV MV and MV-kV image sets. Further, the accuracy in 2D/2D matches with images acquired at non-orthogonal gantry angles was evaluated. The image quality in CBCT images was evaluated using a Catphan® phantom. Hounsfield unit (HU) uniformity and linearity was compared with planning CT. HU accuracy is crucial for dose verification using CBCT data.

The geometric measurements showed good long term stability and accurate position reproducibility after robotic arm motions. A systematic error of about 1 mm in lateral direction of the kV-image center was detected. A small difference between kV and CBCT center was observed and related to a lateral kV detector offset. The vector disagreement between kV- and MV-image centers was  2 mm at some gantry angles. Image registration with the different match applications worked sufficiently. 2D/3D match was seen to correct more accurately than 2D/2D match for large translational and rotational shifts. CBCT images acquired with full-fan mode showed good HU uniformity but half fan images were less uniform. In the soft tissue region the HU agreement with planning CT was reasonable while a larger disagreement was observed at higher densities. This work shows that the OBI is robust and stable in its performance. With regular QC and calibrations the geometric precision of the OBI can be maintained within 1 mm of treatment isocenter.

Place, publisher, year, edition, pages
2007. , 66 p.
Keyword [en]
Image-guided radiotherapy, Cone-beam CT, OBI, Quality Assurance
National Category
Radiology, Nuclear Medicine and Medical Imaging
URN: urn:nbn:se:su:diva-6967OAI: diva2:197375
Available from: 2007-06-29 Created: 2007-06-29Bibliographically approved

Open Access in DiVA

fulltext(2920 kB)7048 downloads
File information
File name FULLTEXT01.pdfFile size 2920 kBChecksum MD5
Type fulltextMimetype application/pdf

By organisation
Medical Radiation Physics (together with KI)
Radiology, Nuclear Medicine and Medical Imaging

Search outside of DiVA

GoogleGoogle Scholar
Total: 7048 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 824 hits
ReferencesLink to record
Permanent link

Direct link