CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt164",{id:"formSmash:upper:j_idt164",widgetVar:"widget_formSmash_upper_j_idt164",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt171_j_idt173",{id:"formSmash:upper:j_idt171:j_idt173",widgetVar:"widget_formSmash_upper_j_idt171_j_idt173",target:"formSmash:upper:j_idt171:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

A two-parametric class of predictors in multivariate regressionPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2007 (English)In: Journal of Chemometrics, ISSN 0886-9383, E-ISSN 1099-128X, Vol. 21, no 5-6, 215-226 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2007. Vol. 21, no 5-6, 215-226 p.
##### Keyword [en]

joint continuum regression, multivariate prediction, multivariate regression, PCR, PLSR, reduced rank regression, ridge regression, SIMPLS, total least squares
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:su:diva-24418DOI: 10.1002/cem.1063ISI: 000250098200006OAI: oai:DiVA.org:su-24418DiVA: diva2:197490
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt600",{id:"formSmash:j_idt600",widgetVar:"widget_formSmash_j_idt600",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt606",{id:"formSmash:j_idt606",widgetVar:"widget_formSmash_j_idt606",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt612",{id:"formSmash:j_idt612",widgetVar:"widget_formSmash_j_idt612",multiple:true});
##### Note

Part of urn:nbn:se:su:diva-7025Available from: 2007-09-06 Created: 2007-08-28 Last updated: 2017-12-13Bibliographically approved
##### In thesis

We demonstrate that a number of well-established multivariate regression methods for prediction are related in that they are special cases of basically one general procedure. We try a more general method based on this procedure with two metaparameters. In a simulation study, based on a latent structure model, we compare this method to ridge regression (RR), multivariate partial least squares regression (PLSR) and repeated univariate PLSR. For most types of data sets studied, all methods do approximately equally well. There are some cases where RR and least squares ridge regression (LSRR) yield larger errors than the other methods, and we conclude that one-factor methods are not adequate for situations where more than one latent variable are needed to describe the data. Among those based on latent variables, none of the methods tried is superior to the others in any obvious way.

1. Regression methods in multidimensional prediction and estimation$(function(){PrimeFaces.cw("OverlayPanel","overlay197492",{id:"formSmash:j_idt1258:0:j_idt1264",widgetVar:"overlay197492",target:"formSmash:j_idt1258:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1841",{id:"formSmash:j_idt1841",widgetVar:"widget_formSmash_j_idt1841",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1894",{id:"formSmash:lower:j_idt1894",widgetVar:"widget_formSmash_lower_j_idt1894",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1895_j_idt1897",{id:"formSmash:lower:j_idt1895:j_idt1897",widgetVar:"widget_formSmash_lower_j_idt1895_j_idt1897",target:"formSmash:lower:j_idt1895:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});