CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt162",{id:"formSmash:upper:j_idt162",widgetVar:"widget_formSmash_upper_j_idt162",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt169_j_idt171",{id:"formSmash:upper:j_idt169:j_idt171",widgetVar:"widget_formSmash_upper_j_idt169_j_idt171",target:"formSmash:upper:j_idt169:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Polynomial Hulls and Envelopes of HolomorphyPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2008 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: Matematiska institutionen , 2008. , 24 p.
##### Keyword [en]

Cantor sets, polynomial hulls, envelopes of holomorphy, continuity principle
##### National Category

Mathematics
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:su:diva-7474ISBN: 978-91-7155-631-8 (print)OAI: oai:DiVA.org:su-7474DiVA: diva2:198364
##### Public defence

2008-04-25, sal 14, hus 5, Kräftriket, Stockholm, 13:15
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt976",{id:"formSmash:j_idt976",widgetVar:"widget_formSmash_j_idt976",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt987",{id:"formSmash:j_idt987",widgetVar:"widget_formSmash_j_idt987",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt998",{id:"formSmash:j_idt998",widgetVar:"widget_formSmash_j_idt998",multiple:true});
Available from: 2008-04-04 Created: 2008-04-01Bibliographically approved

The notion of polynomial hulls of compact subsets of complex Euclidean space plays a crucial role for approximation of holomorphic functions by polynomials - a topic which has many applications. Despite an abstract characterization of polynomial hulls in terms of currents, given by Duval and Sibony, it is often very difficult even for special classes of sets to decide whether the polynomial hull is trivial (i.e. coincides with the set) or not.

An interesting observation is that Oka's description of polynomial hulls using continuous families of analytic varieties links this topic to the so called "continuity principle", the principle of compulsory analytic continuation of functions of several complex variables, which is a foundation of the notion of envelopes of holomorphy.

Our first result states that there are Cantor sets in the unit sphere in complex Euclidean space of dimension at least three the polynomial hull of which contains interior points. (The case of dimension two was treated earlier by B. Jöricke.) Our result may be contrasted to a fact concerning analytic continuation: Cantor sets are removable, i.e. the envelope of holomorphy of the complement of any Cantor set in the unit sphere in complex Euclidean space of dimension at least three coincides with the whole unit ball.

Our second result is the construction of an open connected subset of the unit sphere in three-dimensional complex space, such that the envelope of holomorphy of this set has infinitely many sheets. On the other hand it is known that the envelope of holomorphy of an open subset of a strictly pseudoconvex boundary in two-dimensional space is always single-sheeted.

Our third result is a general form of the continuity principle which emerged from the correction of a respective erroneous result in the literature.

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1836",{id:"formSmash:j_idt1836",widgetVar:"widget_formSmash_j_idt1836",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1889",{id:"formSmash:lower:j_idt1889",widgetVar:"widget_formSmash_lower_j_idt1889",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1890_j_idt1892",{id:"formSmash:lower:j_idt1890:j_idt1892",widgetVar:"widget_formSmash_lower_j_idt1890_j_idt1892",target:"formSmash:lower:j_idt1890:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});