CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt192",{id:"formSmash:upper:j_idt192",widgetVar:"widget_formSmash_upper_j_idt192",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt202_j_idt206",{id:"formSmash:upper:j_idt202:j_idt206",widgetVar:"widget_formSmash_upper_j_idt202_j_idt206",target:"formSmash:upper:j_idt202:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Degeneracy of non-Abelian quantum Hall states on the torus: domain walls and conformal field theoryPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2008 (English)In: Journal of Statistical Mechanics: Theory and Experiment, ISSN 1742-5468, E-ISSN 1742-5468, p. P04016-Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2008. p. P04016-
##### Keyword [en]

conformal field theory (theory), fractional QHE (theory)
##### National Category

Physical Sciences
##### Research subject

Theoretical Physics
##### Identifiers

URN: urn:nbn:se:su:diva-24943DOI: 10.1088/1742-5468/2008/04/P04016ISI: 000255662000020OAI: oai:DiVA.org:su-24943DiVA, id: diva2:198561
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt880",{id:"formSmash:j_idt880",widgetVar:"widget_formSmash_j_idt880",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt906",{id:"formSmash:j_idt906",widgetVar:"widget_formSmash_j_idt906",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt962",{id:"formSmash:j_idt962",widgetVar:"widget_formSmash_j_idt962",multiple:true});
Available from: 2008-05-01 Created: 2008-05-01 Last updated: 2017-12-13Bibliographically approved
##### In thesis

We analyze the non-Abelian Read–Rezayi quantum Hall states on the torus, where it is natural to employ a mapping of the many-body problem onto a one-dimensional lattice model. On the thin torus—the Tao–Thouless (TT) limit—the interacting many-body problem is exactly solvable. The Read–Rezayi states at filling ν = k/(kM+2) are known to be exact ground states of a local repulsive k+1-body interaction, and in the TT limit this is manifested in that all states in the ground state manifold have exactly k particles on any kM+2 consecutive sites. For M \neq 0 the two-body correlations of these states also imply that there is no more than one particle on M adjacent sites. The fractionally charged quasiparticles and quasiholes appear as domain walls between the ground states, and we show that the number of distinct domain wall patterns gives rise to the nontrivial degeneracies, required by the non-Abelian statistics of these states. In the second part of the paper we consider the quasihole degeneracies from a conformal field theory (CFT) perspective, and show that the counting of the domain wall patterns maps one to one on the CFT counting via the fusion rules. Moreover we extend the CFT analysis to topologies of higher genus

1. One-dimensional theory of the quantum Hall system$(function(){PrimeFaces.cw("OverlayPanel","overlay198562",{id:"formSmash:j_idt1459:0:j_idt1467",widgetVar:"overlay198562",target:"formSmash:j_idt1459:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Non-abelian quantum Hall states and fractional charges in one dimension$(function(){PrimeFaces.cw("OverlayPanel","overlay617865",{id:"formSmash:j_idt1459:1:j_idt1467",widgetVar:"overlay617865",target:"formSmash:j_idt1459:1:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1988",{id:"formSmash:j_idt1988",widgetVar:"widget_formSmash_j_idt1988",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt2059",{id:"formSmash:lower:j_idt2059",widgetVar:"widget_formSmash_lower_j_idt2059",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt2060_j_idt2062",{id:"formSmash:lower:j_idt2060:j_idt2062",widgetVar:"widget_formSmash_lower_j_idt2060_j_idt2062",target:"formSmash:lower:j_idt2060:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});