Change search
ReferencesLink to record
Permanent link

Direct link
Growing and moving low-mass planets in non-isothermal disks
Stockholm University, Faculty of Science, Department of Astronomy.
Responsible organisation
2008 (English)In: astronomy & astrophysics, Vol. 478, 245-266 p.Article in journal (Refereed) Published
Abstract [en]

Aims.We study the interaction of a low-mass planet with a protoplanetary disk with a realistic treatment of the energy balance by doing radiation-hydrodynamical simulations. We look at accretion and migration rates and compare them to isothermal studies.

Methods.We used a three-dimensional version of the hydrodynamical method RODEO, together with radiative transport in the flux-limited diffusion approach.

Results.The accretion rate, as well as the torque on the planet, depend critically on the ability of the disk to cool efficiently. For densities appropriate to 5 AU in the solar nebula, the accretion rate drops by more than an order of magnitude compared to isothermal models, while at the same time the torque on the planet is positive, indicating outward migration. It is necessary to lower the density by a factor of 2 to recover inward migration and more than 2 orders of magnitude to recover the usual type I migration. The torque appears to be proportional to the radial entropy gradient in the unperturbed disk. These findings are critical for the survival of protoplanets, and they should ultimately find their way into population synthesis models.

Place, publisher, year, edition, pages
The European Southern Observatory (ESO , 2008. Vol. 478, 245-266 p.
National Category
Astronomy, Astrophysics and Cosmology
URN: urn:nbn:se:su:diva-7833ISI: 000252712900031OAI: diva2:199126
Available from: 2008-05-19 Created: 2008-05-19 Last updated: 2011-01-10Bibliographically approved

Open Access in DiVA

fulltext(5677 kB)91 downloads
File information
File name FULLTEXT01.pdfFile size 5677 kBChecksum MD5
Type fulltextMimetype application/pdf

By organisation
Department of Astronomy
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar
Total: 91 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 69 hits
ReferencesLink to record
Permanent link

Direct link