CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt144",{id:"formSmash:upper:j_idt144",widgetVar:"widget_formSmash_upper_j_idt144",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt145_j_idt147",{id:"formSmash:upper:j_idt145:j_idt147",widgetVar:"widget_formSmash_upper_j_idt145_j_idt147",target:"formSmash:upper:j_idt145:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

On Propagation of Boundary Continuity for Domains in Complex SpacePrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2008 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: Matematiska institutionen , 2008. , p. 36
##### Keyword [en]

Boundary behavior of holomorphic functions, Global boundary behavior of holomorphic functions
##### National Category

Mathematics
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:su:diva-8334ISBN: 978-91-7155-782-7 (print)OAI: oai:DiVA.org:su-8334DiVA, id: diva2:200104
##### Public defence

2008-12-19, sal 14, hus 5, Kräftriket, Stockholm, 10:00
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt432",{id:"formSmash:j_idt432",widgetVar:"widget_formSmash_j_idt432",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt438",{id:"formSmash:j_idt438",widgetVar:"widget_formSmash_j_idt438",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt444",{id:"formSmash:j_idt444",widgetVar:"widget_formSmash_j_idt444",multiple:true});
Available from: 2008-11-27 Created: 2008-11-18Bibliographically approved
##### List of papers

We consider continuity properties of analytic functions in bounded domains in complex space, focusing on the following two questions:

Question 1. Given a bounded domain G in complex affine n-space. For which subsets S of the boundary of G does the following hold? If f is a bounded function which is analytic in G and extends continuously to the union of G and S then f extends continously to the closure of G.

Question 2. Given a domain G as above and a function f analytic in G and continuous in the closure of G. For which subsets S of the boundary is the rate of continuity of f on the closure of G determined already by its rate of continuity along S?

Previously it was known that in some cases, the set S may be taken to be the Shilov boundary of the algebra of analytic functions on the domain which are continuous on the closure of the domain, but examples when this is not sufficient were also known.

In Paper I we prove that for a bounded, smoothly bounded pseudoconvex domain G in 2-dimensional complex affine space one may take for S an open neighbourhood of the Shilov boundary (in the boundary of the domain G). This is joint work with B. Jöricke.

Paper II considers smoothly bounded Reinhardt domains in 2 dimensions and complete Reinhardt domains in complex affine n-space. We prove that in many cases one may let S be the Shilov boundary. Moreover, the respective continuity properties propagate to the closure of the envelope of holomorphy of the domain.

Paper III considers pseudoconvex Hartogs domains with connected vertical sections in two dimensions. We prove that in some cases S may be taken to be the Shilov boundary and give examples for when this is not enough.

1. On propagation of boundary continuity of holomorphic functions of several variables$(function(){PrimeFaces.cw("OverlayPanel","overlay200101",{id:"formSmash:j_idt480:0:j_idt484",widgetVar:"overlay200101",target:"formSmash:j_idt480:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Reinhardt domains in C^n and propagation of continuity$(function(){PrimeFaces.cw("OverlayPanel","overlay200102",{id:"formSmash:j_idt480:1:j_idt484",widgetVar:"overlay200102",target:"formSmash:j_idt480:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Hartogs domains in C^2 and propagation of continuity$(function(){PrimeFaces.cw("OverlayPanel","overlay200103",{id:"formSmash:j_idt480:2:j_idt484",widgetVar:"overlay200103",target:"formSmash:j_idt480:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1141",{id:"formSmash:j_idt1141",widgetVar:"widget_formSmash_j_idt1141",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1194",{id:"formSmash:lower:j_idt1194",widgetVar:"widget_formSmash_lower_j_idt1194",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1195_j_idt1197",{id:"formSmash:lower:j_idt1195:j_idt1197",widgetVar:"widget_formSmash_lower_j_idt1195_j_idt1197",target:"formSmash:lower:j_idt1195:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});