References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Stochastic Epidemic Models: Different Aspects of HeterogeneityPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2008 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: Department of Mathematics, Stockholm University , 2008. , 21 p.
##### National Category

Probability Theory and Statistics
##### Research subject

Mathematical Statistics
##### Identifiers

URN: urn:nbn:se:su:diva-8335ISBN: 978-91-7155-784-1OAI: oai:DiVA.org:su-8335DiVA: diva2:200110
##### Public defence

2008-12-19, sal 14, hus 5, Kräftriket, Stockholm, 13:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
Available from: 2008-11-27 Created: 2008-11-20 Last updated: 2012-07-02Bibliographically approved
##### List of papers

This thesis is concerned with the study of stochastic epidemic models for infectious diseases in heterogeneous populations. All diseases treated are of SIR type, i.e. individuals are either Susceptible, Infectious or Recovered (and immune). The transitions between these states are according to S to I to R.

The thesis consists of five papers. Papers I and II treat approximations for the distribution of the time to extinction. In Paper I, a sub-community version of the SIR model with demography is considered. The interest is in how the distribution of the time to extinction is affected by varying the degree of interaction between the sub-communities. Paper II is concerned with a two-type version of Bartlett's model. The distribution of the time to extinction is studied when the difference in susceptibility/infectivity between the types of individuals is varied.

Papers III and IV treat random intersection graphs with tunable clustering. In Paper III a Reed-Frost epidemic is run on such a random intersection graph. The critical parameter R_0 and the probability of a large outbreak are derived and it is investigated how these quantities are affected by the clustering in the graph. In Paper IV the interest is in the component structure of such a graph, i.e. the size and the emergence of a giant component is studied.

The last paper, Paper V, treats the situation when a simple epidemic is running in a varying environment. A varying environment is in this context any external factor that affects the contact rate in the population, but is itself unaffected by the population. The model treated is a term-time forced version of the stochastic general epidemic where the contact rate is modelled by an alternating renewal process. A threshold parameter R_* and the probability of a large outbreak are derived and studied.

1. Endemic persistence or disease extinction: The effect of separation into sub-communities$(function(){PrimeFaces.cw("OverlayPanel","overlay200105",{id:"formSmash:j_idt423:0:j_idt427",widgetVar:"overlay200105",target:"formSmash:j_idt423:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. On the time to extinction for a two-type version of Bartlett's epidemic model$(function(){PrimeFaces.cw("OverlayPanel","overlay200106",{id:"formSmash:j_idt423:1:j_idt427",widgetVar:"overlay200106",target:"formSmash:j_idt423:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Epidemics on random graphs with tunable clustering$(function(){PrimeFaces.cw("OverlayPanel","overlay200107",{id:"formSmash:j_idt423:2:j_idt427",widgetVar:"overlay200107",target:"formSmash:j_idt423:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. A note on the component structure in random intersection graphs with tunable clustering$(function(){PrimeFaces.cw("OverlayPanel","overlay200108",{id:"formSmash:j_idt423:3:j_idt427",widgetVar:"overlay200108",target:"formSmash:j_idt423:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. The early stage behaviour of a stochastic SIR epidemic with term-time forcing$(function(){PrimeFaces.cw("OverlayPanel","overlay286656",{id:"formSmash:j_idt423:4:j_idt427",widgetVar:"overlay286656",target:"formSmash:j_idt423:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});