CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt196",{id:"formSmash:upper:j_idt196",widgetVar:"widget_formSmash_upper_j_idt196",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt197_j_idt199",{id:"formSmash:upper:j_idt197:j_idt199",widgetVar:"widget_formSmash_upper_j_idt197_j_idt199",target:"formSmash:upper:j_idt197:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

A Natural Interpretation of Classical ProofsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2006 (English)Doctoral thesis, monograph (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: Matematiska institutionen , 2006. , p. 100
##### Keywords [en]

Brouwer-Heyting-Kolmogorov, classical logic, constructive type theory, constructive semantics, proof interpretation, double-negation, continuation-passing-style, natural deduction, sequent calculus, cut elimination, explicit substitution
##### National Category

Algebra and Logic
##### Identifiers

URN: urn:nbn:se:su:diva-913ISBN: 91-7155-206-5 (print)OAI: oai:DiVA.org:su-913DiVA, id: diva2:200630
##### Public defence

2006-04-06, sal 14, hus 5, Kräftriket, Stockholm, 10:00
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt517",{id:"formSmash:j_idt517",widgetVar:"widget_formSmash_j_idt517",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt523",{id:"formSmash:j_idt523",widgetVar:"widget_formSmash_j_idt523",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt529",{id:"formSmash:j_idt529",widgetVar:"widget_formSmash_j_idt529",multiple:true}); Available from: 2006-03-07 Created: 2006-03-07Bibliographically approved

In this thesis we use the syntactic-semantic method of constructive type theory to give meaning to classical logic, in particular Gentzen's LK.

We interpret a derivation of a classical sequent as a derivation of a contradiction from the assumptions that the antecedent formulas are true and that the succedent formulas are false, where the concepts of truth and falsity are taken to conform to the corresponding constructive concepts, using function types to encode falsity. This representation brings LK to a manageable form that allows us to split the succedent rules into parts. In this way, every succedent rule gives rise to a natural deduction style introduction rule. These introduction rules, taken together with the antecedent rules adapted to natural deduction, yield a natural deduction calculus whose subsequent interpretation in constructive type theory gives meaning to classical logic.

The Gentzen-Prawitz inversion principle holds for the introduction and elimination rules of the natural deduction calculus and allows for a corresponding notion of convertibility. We take the introduction rules to determine the meanings of the logical constants of classical logic and use the induced type-theoretic elimination rules to interpret the elimination rules of the natural deduction calculus. This produces an interpretation injective with respect to convertibility, contrary to an analogous translation into intuitionistic predicate logic.

From the interpretation in constructive type theory and the interpretation of cut by explicit substitution, we derive a full precision contraction relation for a natural deduction version of LK. We use a term notation to formalize the contraction relation and the corresponding cut-elimination procedure.

The interpretation can be read as a Brouwer-Heyting-Kolmogorov (BHK) semantics that justifies classical logic. The BHK semantics utilizes a notion of classical proof and a corresponding notion of classical truth akin to Kolmogorov's notion of pseudotruth. We also consider a second BHK semantics, more closely connected with Kolmogorov's double-negation translation.

The first interpretation reinterprets the consequence relation while keeping the constructive interpretation of truth, whereas the second interpretation reinterprets the notion of truth while keeping the constructive interpretation of the consequence relation. The first and second interpretations act on derivations in much the same way as Plotkin's call-by-value and call-by-name continuation-passing-style translations, respectively.

We conclude that classical logic can be given a constructive semantics by laying down introduction rules for the classical logical constants. This semantics constitutes a proof interpretation of classical logic.

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1291",{id:"formSmash:j_idt1291",widgetVar:"widget_formSmash_j_idt1291",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1346",{id:"formSmash:lower:j_idt1346",widgetVar:"widget_formSmash_lower_j_idt1346",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1347_j_idt1349",{id:"formSmash:lower:j_idt1347:j_idt1349",widgetVar:"widget_formSmash_lower_j_idt1347_j_idt1349",target:"formSmash:lower:j_idt1347:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});