Change search
ReferencesLink to record
Permanent link

Direct link
The applicability of metapopulation theory to large mammals
Stockholm University, Faculty of Science, Department of Zoology.ORCID iD: 0000-0001-5496-4727
Stockholm University, Faculty of Science, Department of Zoology.ORCID iD: 0000-0001-5535-9086
2001 (English)In: Oikos, ISSN 0030-1299, E-ISSN 1600-0706, Vol. 94, no 1, 89-100 p.Article in journal (Refereed) Published
Abstract [en]

Metapopulation theory has become a common framework in conservation biology and it is sometimes suggested that a metapopulation approach should be used for management of large mammals. However. it has also been suggested that metapopulation theory would not be applicable to species with long generations compared to those with short ones. In this paper, we review how and on what empirical ground metapopulation terminology liar, been applied to insects, small mammals and large mammals, The review showed that the metapopulation term sometimes was used for population networks which only fulfilled the broadest possible definition of a metapopulation, i.e. they were subpopulations connected by migrating individuals. We argue that the metapopulation concept should be reserved for networks that also show some kind of metapopulation dynamics. Otherwise it applies to almost all populations and loses its substance. We found much empirical support for metapopulation dynamics in both insects and small mammals, but not in large mammals. A me possible reason is the methods used to confirm the existence of metapopulation dynamics, For insects and small mammals, the common approach is to study population turnover through patch occupancy data. Such data is difficult to obtain for large mammals, since longer temporal scales need to be covered to record extinctions and colonizations. Still, many populations of large mammals are exposed to habitat fragmentation and the resulting subpopulations sometimes have high risks of extinction. If there is migration between the subpopulations, the metapopulation framework could provide valuable information on their population dynamics. We suggest that a metapopulation approach can be interesting for populations of large mammals. when there are discrete breeding subpopulations and when these subpopulations have different growth rates and demographic fates. Thus, a comparison of the subpopulations' demographic fates, rather than subpopulation turnover, can be a feasible alternative for studies of metapopulation dynamics in large mammals.

Place, publisher, year, edition, pages
2001. Vol. 94, no 1, 89-100 p.
National Category
Natural Sciences
URN: urn:nbn:se:su:diva-29688ISBN: 0030-1299OAI: diva2:234740
ISI Document Delivery No.: 463NE Times Cited: 12 Cited Reference Count: 89Available from: 2009-09-10 Created: 2009-09-10 Last updated: 2014-10-13Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Elmhagen, B.odilAngerbjörn, Anders
By organisation
Department of Zoology
In the same journal
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 112 hits
ReferencesLink to record
Permanent link

Direct link