Change search
ReferencesLink to record
Permanent link

Direct link
Interaction of the signal transduction protein GlnJ with the cellular targets AmtB1, GlnE and GlnD in Rhodospirillum rubrum: dependence on manganese, 2-oxoglutarate and the ADP/ATP ratio.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Show others and affiliations
2008 (English)In: Microbiology, ISSN 1350-0872, Vol. 154, no Pt 8, 2336-47 p.Article in journal (Refereed) Published
Abstract [en]

The PII family of signal transduction proteins is widespread amongst the three domains of life, and its members have fundamental roles in the general control of nitrogen metabolism. These proteins exert their regulatory role by direct protein-protein interaction with a multitude of cellular targets. The interactions are dependent on the binding of metabolites such as ATP, ADP and 2-oxoglutarate (2-OG), and on whether or not the PII protein is modified. In the photosynthetic nitrogen-fixing bacterium Rhodospirillum rubrum three PII paralogues have been identified and termed GlnB, GlnJ and GlnK. In this report we analysed the interaction of GlnJ with known cellular targets such as the ammonium transporter AmtB1, the adenylyltransferase GlnE and the uridylyltransferase GlnD. Our results show that the interaction of GlnJ with cellular targets is regulated in vitro by the concentrations of manganese and 2-OG and the ADP : ATP ratio. Furthermore, we show here for the first time, to our knowledge, that in the interactions of GlnJ with the three different partners, the energy signal (ADP : ATP ratio) in fact overrides the carbon/nitrogen signal (2-OG). In addition, by generating specific amino acid substitutions in GlnJ we show that the interactions with different cellular targets are differentially affected, and the possible implications of these results are discussed. Our results are important to further the understanding of the regulatory role of PII proteins in R. rubrum, a photosynthetic bacterium in which the nitrogen fixation process and its intricate control mechanisms make the regulation of nitrogen metabolism even more complex than in other studied bacteria.

Place, publisher, year, edition, pages
2008. Vol. 154, no Pt 8, 2336-47 p.
URN: urn:nbn:se:su:diva-30682DOI: 10.1099/mic.0.2008/017533-0ISI: 000258860200016PubMedID: 18667566OAI: diva2:274145
Available from: 2009-10-27 Created: 2009-10-22 Last updated: 2010-01-13Bibliographically approved
In thesis
1. PII proteins as global regulators of bacterial nitrogen metabolism
Open this publication in new window or tab >>PII proteins as global regulators of bacterial nitrogen metabolism
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Nitrogen is an essential element to sustain life, being a component of most biological macromolecules. In spite of the abundance of gaseous N2, the availability of nitrogen compounds that can be readily used by most microorganisms is scarce and its production energetically demanding. Due to the central importance of nitrogen metabolism, most microorganisms evolved elaborate mechanisms to ensure efficient regulation, balancing substrate availability, product formation and energy expenditure.

In most bacteria, many archaea and some plants, the different aspects of nitrogen metabolism are coordinated by members of the PII family of signal transduction proteins, acting as fundamental molecular messengers controlling several cellular processes. In proteobacteria, including the nitrogen fixing organism Rhodospirillum rubrum, these proteins are involved in regulation at different levels: they regulate gene expression, modulating the activity of several transcription factors; they control the flux through the ammonium transport protein (AmtB); they influence the activity of key metabolic enzymes, e.g. glutamine synthetase (GS) and nitrogenase. The signal sensing and integration by these proteins is achieved in two different yet interdependent strategies: allosteric regulation (by the binding of metabolites like ATP, ADP, 2-oxoglutarate) and reversible post-translational modification. Signal integration likely results in different conformations of the proteins, influencing the direct protein-protein interaction with the cellular targets.

In the present work, using R. rubrum as a model organism, we have studied some aspects of the biochemistry of PII proteins in terms of regulatory interactions with the ammonium transport protein AmtB1 and the adenylyltransferase GlnE (involved in GS regulation). Additionally, we have investigated the post-translational modification of PII proteins, showing for the first time in vivo in addition in vitro selectivity in the modification of different PII proteins.

Our results contributed to elucidate several new aspects in the regulation by PII proteins and also strengthened the idea that these proteins act as global regulators in the context of bacterial nitrogen metabolism.

Place, publisher, year, edition, pages
Stockholm: Department of Biochemistry and Biophysics, Stockholms universitet, 2009. 68 p.
Rhodospirillum rubrum, nitrogen metabolism, signal transduction, PII proteins
National Category
Biochemistry and Molecular Biology
Research subject
urn:nbn:se:su:diva-30815 (URN)978-91-7155-963-0 (ISBN)
Public defence
2009-12-07, Magnélisalen, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
At the time of the doctoral defence the following papers were unpublished and had a status as follows: Paper 1: Manuscript. Paper 4: Manuscript.Available from: 2009-11-15 Created: 2009-10-27 Last updated: 2010-01-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Teixeira, Pedro FilipeNordlund, Stefan
By organisation
Department of Biochemistry and Biophysics
In the same journal

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 32 hits
ReferencesLink to record
Permanent link

Direct link