Change search
ReferencesLink to record
Permanent link

Direct link
Delivery of nucleic acids with a stearylated (RxR)4 peptide using a non-covalent co-incubation strategy
Stockholm University, Faculty of Science, Department of Neurochemistry. University of Tartu, Estonia.
Show others and affiliations
2010 (English)In: Journal of Controlled Release, ISSN 0168-3659, E-ISSN 1873-4995, Vol. 141, no 1, 42-51 p.Article in journal (Refereed) Published
Abstract [en]

In recent years, oligonucleotide-based molecules have been intensely used to modulate gene expression. All these molecules share the common feature of being essentially impermeable over cellular membranes and they therefore require efficient delivery vectors. Cell-penetrating peptides are a group of delivery peptides that has been readily used for nucleic acid delivery. In particular, polyarginine and derivates thereof, i.e. the (RxR)4 peptide, have been applied with success both in vitro and in vivo. A major problem, however, with these arginine-rich peptides is that they frequently remain trapped in endosomal compartments following internalization. The activity of polyarginine has previously been improved by conjugation to a stearyl moiety. Therefore, we sought to investigate what impact such modification would have on the pre-clinically used (RxR)4 peptide for non-covalent delivery of plasmids and splice-correcting oligonucleotides (SCOs) and compare it with stearylated Arg9 and Lipofectamine™ 2000. We show that stearyl-(RxR)4 mediates efficient plasmid transfections in several cell lines and the expression levels are significantly higher than when using unmodified (RxR)4 or stearylated Arg9. Although the transfection efficiency is lower than with Lipofectamine™ 2000, we show that stearyl-(RxR)4 is substantially less toxic. Furthermore, using a functional splice-correction assay, we show that stearyl-(RxR)4 complexed with 2′-OMe SCOs promotes significant splice correction whereas stearyl-Arg9 fails to do so. Moreover, stearyl-(RxR)4 promotes dose-dependent splice correction in parity with (RxR)4-PMO covalent conjugates, but at least 10-times lower concentration. These features make this stearic acid modified analog of (RxR)4 an intriguing vector for future in vivo experiments.

Place, publisher, year, edition, pages
2010. Vol. 141, no 1, 42-51 p.
Keyword [en]
Cell-penetrating peptide, Gene delivery, Oligonucleotide delivery, Splice correction, Stearylation
National Category
Research subject
Neurochemistry with Molecular Neurobiology
URN: urn:nbn:se:su:diva-32184DOI: 10.1016/j.jconrel.2009.08.028ISI: 000274104200007OAI: diva2:279693
Available from: 2009-12-04 Created: 2009-12-04 Last updated: 2015-04-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Ezzat, KariemGuterstam, PeterEL Andaloussi, SamirLangel, Ülo
By organisation
Department of Neurochemistry
In the same journal
Journal of Controlled Release

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 53 hits
ReferencesLink to record
Permanent link

Direct link