Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effects of a polychaete invader on soft-bottom ecosystem functions
Stockholm University, Faculty of Science, Department of Systems Ecology. (Marin Ekologi)
Stockholm University, Faculty of Science, Department of Systems Ecology.
Stockholm University, Faculty of Science, Department of Systems Ecology.
(English)Manuscript (preprint) (Other academic)
Keyword [en]
biodiversity, ecosystem functioning, invasive species, benthic-pelagic coupling, complementarity, selection, dominance, competition, niche, Baltic Sea
Identifiers
URN: urn:nbn:se:su:diva-32592OAI: oai:DiVA.org:su-32592DiVA: diva2:281042
Available from: 2009-12-14 Created: 2009-12-14 Last updated: 2010-05-05Bibliographically approved
In thesis
1. Benthic use of phytoplankton blooms: uptake, burial and biodiversity effects in a species-poor system
Open this publication in new window or tab >>Benthic use of phytoplankton blooms: uptake, burial and biodiversity effects in a species-poor system
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Animals living in marine sediments (the second largest habitat on earth) play a major role in global biogeochemical cycling. By feeding on organic matter from settled phytoplankton blooms they produce food for higher trophic levels and nutrients that can fuel primary production. In the Baltic Sea, anthropogenic stresses, such as eutrophication and introductions of invasive species, have altered phytoplankton dynamics and benthic communities. This thesis discusses the effects of different types of phytoplankton on the deposit-feeding community and the importance of benthic biodiversity for fate of the phytoplankton bloom-derived organic matter.

Deposit-feeders survived and fed on settled cyanobacterial bloom material and in doing so accumulated the cyanobacterial toxin nodularin. Their growth after feeding on cyanobacteria was much slower than on a diet of spring bloom diatoms. The results show that settling blooms of cyanobacteria are used as food without obvious toxic effects, although they do not sustain rapid growth of the fauna. Since all tested species accumulated the cyanotoxin, negative effects higher up in the food web can not be ruled out. Both species composition and richness of deposit-feeding macrofauna influenced how much of the phytoplankton bloom material that was incorporated in fauna or retained in the sediment. The mechanism behind the positive effect of species richness was mainly niche differentiation among functionally different species, resulting in a more efficient utilization of resources at greater biodiversity. This was observed even after addition of an invasive polychaete species. Hence, species loss can be expected to affect benthic productivity negatively. In conclusion, efficiency in organic matter processing depends both on pelagic phytoplankton quality and benthic community composition and species richness.

Place, publisher, year, edition, pages
Stockholm: Department of Systems Ecology, Stockholm University, 2010. 39 p.
Keyword
biodiversity, ecosystem functioning, benthic-pelagic coupling, niche, resource partitioning, competition, eutrophication, cyanobacterial blooms, diatoms, invasive species, Baltic Sea
National Category
Ecology
Research subject
Marine Ecology
Identifiers
urn:nbn:se:su:diva-32598 (URN)978-91-7155-991-3 (ISBN)
Public defence
2010-02-05, Nordenskiöldsalen, Geovetenskapens hus, Svante Arrhenius väg 12, Stockholm, 09:30 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 4: In press. Paper 5: Manuscript.

Available from: 2009-12-21 Created: 2009-12-14 Last updated: 2017-10-04Bibliographically approved
2. The importance of biodiversity for ecosystem processes in sediments: experimental examples from the Baltic Sea
Open this publication in new window or tab >>The importance of biodiversity for ecosystem processes in sediments: experimental examples from the Baltic Sea
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Betydelsen av biologisk mångfald för ekosystemprocesser i sediment : experimentella exempel från Östersjön
Abstract [en]

Aquatic sediments are, by surface, the largest habitat on Earth. A wide diversity of organisms inhabit these sediments and by their actions they have a large influence on and also mediate many ecosystem processes. Several of these processes, such as decomposition and remineralisation of organic matter are important on a global scale and are essential to sustain life on Earth. The main aim of this thesis was to use an experimental ecosystem ecology approach in order to study some of these ecosystem processes in marine sediments and how they are linked to biodiversity.

Paper I and II found that an increased species richness of sediment deposit feeders increases the processing of organic matter from phytoplankton settled on the sea-floor, and that species-rich communities have a more efficient resource utilization of deposited organic matter. The results in paper IV and V also suggest that there is a link between microbial diversity in sediments and the degradation of organic contaminants. Paper V also shows that antibiotic pollution is a potential threat to natural microbial diversity and microbially mediated ecosystem services. The introduction of invasive species to ecosystems is another major threat to biodiversity and was studied in Paper II and III, by investigating the ecology of Marenzelleria arctia, a polychaete worm recently introduced in the Baltic Sea. Paper II suggests that M. arctia mainly utilize food resources not used by native deposit feeders, thus potentially increasing the benthic production in the Baltic Sea by increasing resource use efficiency. Paper III, however, show that M. arctia is protected from predation by the native benthic invertebrate predators, due to its ability to burrow deep in the sediment, suggesting that predation on M. arctia by higher trophic levels is restricted, thereby limiting trophic transfer.

In conclusion, this thesis gives some examples of the importance of marine biodiversity for the generation of a few key ecosystem processes, such as organic matter processing and the degradation of harmful contaminants.

Place, publisher, year, edition, pages
Stockholm: Department of Systems Ecology, Stockholm University, 2010. 37 p.
Keyword
Biodiversity, Soft-bottom sediment, Ecosystem processes, Ecosystem function, Benthic-pelagic coupling, Baltic Sea, Trophic interactions, Pollutant biodegradation, Organic matter mineralization, Deposit feeder, Detritivore, Invasive species
National Category
Ecology
Research subject
Marine Ecotoxicology
Identifiers
urn:nbn:se:su:diva-38893 (URN)978-91-7447-087-1 (ISBN)
Public defence
2010-06-04, Nordenskiöldsalen, Geovetenskapens hus, Svante Arrhenius väg 12, Stockholm, 13:00 (English)
Opponent
Supervisors
Note
At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript. Paper 4: In press. Available from: 2010-05-11 Created: 2010-05-03 Last updated: 2010-05-05Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Karlson, AgnesNäslund, Johan
By organisation
Department of Systems Ecology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 57 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf