Change search
ReferencesLink to record
Permanent link

Direct link
Fine root dynamics and trace gas fluxes in two lowland tropical forest soils.
Univ Cal - Berkeley.
Univ Cal - Berkeley.
Univ Cal - Berkeley.
Univ New Hampshire.
Show others and affiliations
2005 (English)In: Global Change Biology, ISSN 1354-1013, E-ISSN 1365-2486, Vol. 11, no 2, 290-306 p.Article in journal (Refereed) Published
Abstract [en]

Fine root dynamics have the potential to contribute significantly to ecosystem-scale biogeochemical cycling, including the production and emission of greenhouse gases. This is particularly true in tropical forests which are often characterized as having large fine root biomass and rapid rates of root production and decomposition. We examined patterns in fine root dynamics on two soil types in a lowland moist Amazonian forest, and determined the effect of root decay on rates of C and N trace gas fluxes. Root production averaged 229 (±35) and 153 (±27) g m<sup>−2</sup> yr<sup>−1</sup> for years 1 and 2 of the study, respectively, and did not vary significantly with soil texture. Root decay was sensitive to soil texture with faster rates in the clay soil (k=−0.96 year<sup>−1</sup>) than in the sandy loam soil (k=−0.61 year<sup>−1</sup>), leading to greater standing stocks of dead roots in the sandy loam. Rates of nitrous oxide (N<sub>2</sub>O) emissions were significantly greater in the clay soil (13±1 ng N cm<sup>−2</sup> h<sup>−1</sup>) than in the sandy loam (1.4±0.2 ng N cm<sup>−2</sup> h<sup>−1</sup>). Root mortality and decay following trenching doubled rates of N<sub>2</sub>O emissions in the clay and tripled them in sandy loam over a 1-year period. Trenching also increased nitric oxide fluxes, which were greater in the sandy loam than in the clay. We used trenching (clay only) and a mass balance approach to estimate the root contribution to soil respiration. In clay soil root respiration was 264–380 g C m<sup>−2</sup> yr<sup>−1</sup>, accounting for 24% to 35% of the total soil CO<sub>2</sub> efflux. Estimates were similar using both approaches. In sandy loam, root respiration rates were slightly higher and more variable (521±206 g C m<sup>2</sup> yr<sup>−1</sup>) and contributed 35% of the total soil respiration. Our results show that soil heterotrophs strongly dominate soil respiration in this forest, regardless of soil texture. Our results also suggest that fine root mortality and decomposition associated with disturbance and land-use change can contribute significantly to increased rates of nitrogen trace gas emissions.

Place, publisher, year, edition, pages
2005. Vol. 11, no 2, 290-306 p.
National Category
Earth and Related Environmental Sciences
Research subject
Environmental Chemistry
URN: urn:nbn:se:su:diva-33984DOI: 10.1111/j.1365-2486.2005.00903.xOAI: diva2:283923
Available from: 2010-01-02 Created: 2010-01-02 Last updated: 2012-02-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Crill, Patrick
By organisation
Department of Geology and Geochemistry
In the same journal
Global Change Biology
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 19 hits
ReferencesLink to record
Permanent link

Direct link