Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Allopolyploidy in Fragariinae (Rosaceae): Comparing four DNA sequence regions, with comments on classification
Stockholm University, Faculty of Science, Department of Botany.
Gothenburg University, Department of Environmental Sciences.
Gothenburg University, Department of Environmental Sciences.
Stockholm University, Faculty of Science, Department of Botany.
Show others and affiliations
2009 (English)In: Molecular Phylogenetics and Evolution, ISSN 1055-7903, E-ISSN 1095-9513, Vol. 51, no 2, 269-280 p.Article in journal (Refereed) Published
Abstract [en]

Potential events of allopolyploidy may be indicated by incongruences between separate phylogenies based on plastid and nuclear gene sequences. We sequenced two plastid regions and two nuclear ribosomal regions for 34 ingroup taxa in Fragariinae (Rosaceae), and six outgroup taxa. We found five well supported incongruences that might indicate allopolyploidy events. The incongruences involved Aphanes arvensis, Potentilla miyabei, Potentilla cuneata, Fragaria vesca/moschata, and the Drymocallis clade. We evaluated the strength of conflict and conclude that allopolyploidy may be hypothesised in the four first cases. Phylogenies were estimated using Bayesian inference and analyses were evaluated using convergence diagnostics. Taxonomic implications are discussed for genera such as Alchemilla, Sibbaldianthe, Chamaerhodos, Drymocallis and Fragaria, and for the monospecific Sibbaldiopsis and Potaninia that are nested inside other genera. Two orphan Potentilla species, P. miyabei and P. cuneata are placed in Fragariinae. However, due to unresolved topological incongruences they are not reclassified in any genus.

Place, publisher, year, edition, pages
2009. Vol. 51, no 2, 269-280 p.
National Category
Biological Sciences Biological Systematics
Research subject
Systematic Botany
Identifiers
URN: urn:nbn:se:su:diva-34698DOI: doi:10.1016/j.ympev.2009.02.020ISI: 000265812000012OAI: oai:DiVA.org:su-34698DiVA: diva2:285332
Available from: 2010-01-11 Created: 2010-01-11 Last updated: 2017-12-12Bibliographically approved
In thesis
1. Systematics and polyploid evolution in Potentilleae (Rosaceae)
Open this publication in new window or tab >>Systematics and polyploid evolution in Potentilleae (Rosaceae)
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis comprises studies of the phylogenetic relationships in the flowering plant clade Potentilleae in Rosaceae. The relationships were elucidated by using DNA sequence data from the nuclear genome as well as from the plastid genome. In particular, the focus of the studies was the investigation of allopolyploidy, i.e. speciation as a result of hybridization and subsequent chromosome doubling. A phylogenetic method was used for identifying allopolyploidy through comparison of trees resulting from the analyses of different DNA sequences. Five sub-clades were investigated. First, both the sister clades that together contain all of Potentilleae: Fragariinae and Potentilla. Secondly, three subclades of Fragariinae, namely Alchemilla in wide sense, Sibbaldia and relatives, and Fragaria. The aim was to unravel the phylogenetic relationships, including instances of allopolyploidy. Classification issues were discussed in relation to the phylogenetic results. The split between Potentilla (=Potentillinae) and Fragariinae received better support than in previous studies. The phylogeny of Fragariinae was found to be consistent with classifying ten genera: Alchemilla in wide sense (incl. Aphanes and Lachemilla), Comarum, Sibbaldia, Sibbaldianthe, Sibbaldiopsis, Chamaerhodos, Drymocallis, Dasiphora, Potaninia, Fragaria, and also including a few orphan Potentilla species. The segregated genera Ivesia, Horkelia, Horkeliella and Duchesnea were found to be nested within Potentilla, corroborating earlier studies, while the segregated genus Argentina (P. anserina and close relatives) showed an ambiguous position. Plastid and nuclear (ribosomal) phylogenies were compared and incongruences were detected as potential instances of allopolyploid speciation. Five strongly supported incongruences were detected in Fragariinae and four of them were considered to be potentially caused by allopolyploidy. In addition, five supported incongruences were found in Potentilla. Alchemilla in the wide sense was found to contain four major clades, African Alchemilla, Eurasian Alchemilla, Lachemilla and Aphanes. Both Lachemilla and Aphanes were nested within Alchemilla and it was suggested that the name Alchemilla should be used in the wide sense, i.e. including both the genera Lachemilla and Aphanes. The genus Sibbaldia as commonly classified was shown to be polyphyletic in five different places in Potentilleae. Three Sibbaldia clades ended up in Fragariinae and two in Potentilla. A phylogeny of Fragaria, based on a nuclear low/single copy DNA region was estimated. The gene copy phylogeny was used to construct a reticulate tree hypothesizing allopolyploid speciation events. The evolution of Fragaria was shown to have been shaped by polyploidy.

Place, publisher, year, edition, pages
Stockholm: Department of Botany, Stockholm University, 2011. 28 p.
Keyword
Potentilleae, Fragariinae, Potentilla, Sibbaldia, Fragaria, Alchemilla, systematics, phylogeny, polyploidy, autopolyploidy, allopolyploidy, reticulate evolution
National Category
Biological Systematics
Research subject
Plant Systematics
Identifiers
urn:nbn:se:su:diva-53967 (URN)978-91-7447-227-1 (ISBN)
Public defence
2011-05-20, föreläsningssalen, Botanicum, Lilla Frescativägen 5, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 4: Manuscript. Paper 5: Manuscript.Available from: 2011-04-28 Created: 2011-01-25 Last updated: 2011-04-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Lundberg, MagnusNylander, JohanEriksson, Torsten
By organisation
Department of BotanyThe Bergius Botanical Garden Museum
In the same journal
Molecular Phylogenetics and Evolution
Biological SciencesBiological Systematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 145 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf