References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Quasielectrons in Abelian and non-Abelian Quantum Hall StatesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2010 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: Department of Physics, Stockholm University , 2010. , 62 p.
##### Keyword [en]

quantum Hall effect
##### National Category

Condensed Matter Physics
##### Research subject

Theoretical Physics
##### Identifiers

URN: urn:nbn:se:su:diva-37203ISBN: 978-91-7447-016-1OAI: oai:DiVA.org:su-37203DiVA: diva2:294410
##### Public defence

2010-03-30, FB52, AlbaNova University Center, Roslagstullsbacken 21, Stockholm, 10:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
Available from: 2010-03-08 Created: 2010-02-17 Last updated: 2010-02-24Bibliographically approved
##### List of papers

Strongly correlated electron systems continue to attract a lot of interest. Especially two-dimensional electron systems have shown many surprising behaviours. A fascinating example is the quantum Hall effect, which arises when electrons are confined to two dimensions, subjected to a very large magnetic field, and cooled to very low temperatures. Under these conditions, the electrons form new states of matter - the strongly correlated quantum Hall liquids. A hallmark of these quantum liquids is the precise quantization of the Hall conductance, but in recent years more attention has been focused on their exotic excitations. These have fractional electric charge, and fractional exchange statistics. The latter implies that the wave function is multiplied by a phase factor containing a fractional phase when two quasiparticles are moved around each other. Thus, they are neither bosons nor fermions, but so-called anyons. In recent years, there has accumulated theoretical and experimental evidence for some of the quantum Hall liquids having even more exotic excitations with not only fractional but non-Abelian exchange statistics. The quasiparticles of such systems could be used to build topologically protected quantum bits, which are much more robust than presently available quantum bits; they would be the ideal building blocks of a quantum computer.

We use conformal field theory to describe the quantum Hall liquids, as well as their excitations. In particular, we represent the electrons and quasiparticles by conformal field theory operators. Even though the operator description for quasiholes is very well understood, it was for a long time unclear how to describe their antiparticles, the quasielectrons. We found an operator that describes quasielectron excitations correctly and shares many of the useful properties of the corresponding quasihole operator. For instance, many of the topological properties of the particles are manifest in the operator. This not only adds a missing piece to the quantum Hall puzzle, but it also opens up new and exciting possibilities. For instance, we were able to extend this construction to the non-Abelian states. A highly non-trivial application of our approach is the condensation of non-Abelian quasielectrons, which yields new non-Abelian quantum Hall states with non-Abelian properties that differ from those of their parent states.

1. Microscopic theory of the quantum Hall hierarchy$(function(){PrimeFaces.cw("OverlayPanel","overlay295416",{id:"formSmash:j_idt423:0:j_idt427",widgetVar:"overlay295416",target:"formSmash:j_idt423:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Quantum Hall hierarchy wave functions: From conformal correlators to Tao-Thouless states$(function(){PrimeFaces.cw("OverlayPanel","overlay295421",{id:"formSmash:j_idt423:1:j_idt427",widgetVar:"overlay295421",target:"formSmash:j_idt423:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Conformal Field Theory Approach to Abelian and Non-Abelian Quantum Hall Quasielectrons$(function(){PrimeFaces.cw("OverlayPanel","overlay295425",{id:"formSmash:j_idt423:2:j_idt427",widgetVar:"overlay295425",target:"formSmash:j_idt423:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Quantum Hall quasielectron operators in conformal field theory$(function(){PrimeFaces.cw("OverlayPanel","overlay295429",{id:"formSmash:j_idt423:3:j_idt427",widgetVar:"overlay295429",target:"formSmash:j_idt423:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. Condensing Non-Abelian Quasiparticles$(function(){PrimeFaces.cw("OverlayPanel","overlay295431",{id:"formSmash:j_idt423:4:j_idt427",widgetVar:"overlay295431",target:"formSmash:j_idt423:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

6. Quantum Hall wave functions on the torus$(function(){PrimeFaces.cw("OverlayPanel","overlay295419",{id:"formSmash:j_idt423:5:j_idt427",widgetVar:"overlay295419",target:"formSmash:j_idt423:5:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});