Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Stable oxygen and hydrogen isotopes in sub-Arctic lake wateras from northern Sweden
Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
NERC Isotope Geosciences Laboratory , BGS, UK.
Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
Show others and affiliations
2009 (English)In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 376, 143-151 p.Article in journal (Refereed) Published
Abstract [en]

Lakes in sub-Arctic regions have the potential of retaining many different aspects of water isotope composition in their sediments which can be used for palaeoclimate reconstruction. It is therefore important to understand the modern isotope hydrology of these lakes. Here we discuss the significance of variations in water isotope composition of a series of lakes located in north-west Swedish Lapland. Climate in this region is forced by changes in the North Atlantic which renders it an interesting area for climate reconstructions. We compare δ18Olake and δ2Hlake collected between 2001 and 2006 and show that the lakes in this sub-Arctic region are currently mainly recharged by shallow groundwater and precipitation which undergoes little subsequent evaporation, and that the d18O and δ2H composition of input to the majority of the lakes varies on a seasonal basis between winter precipitation (and spring thaw) and summer precipitation. Seasonal variations in the isotopic composition of the lake waters are larger in lakes with short residence times (<6 months), which react faster to seasonal changes in the precipitation, compared to lakes with longer residence times (>6 months), which retain an isotopic signal closer to that of annual mean precipitation. Lake waters also show a range of isotope values between sites due to catchment elevation and timing of snow melt. The lake water data collected in this study was supported by isotope data from lake waters, streams and ground waters from1995 to 2000 reported in other studies.

Place, publisher, year, edition, pages
2009. Vol. 376, 143-151 p.
Keyword [en]
Stable isotopes, 18O/16O, 2H/H, surface waters, Sub-Arctic lakes, Northern Sweden
National Category
Physical Geography
Identifiers
URN: urn:nbn:se:su:diva-37521DOI: 10.1016/j.hydrol.2009.07.021ISI: 000270759400014OAI: oai:DiVA.org:su-37521DiVA: diva2:302692
Available from: 2010-04-22 Created: 2010-03-09 Last updated: 2017-12-12Bibliographically approved
In thesis
1. Holocene climate and atmospheric circulation changes in northern Fennoscandia: Interpretations from lacustrine oxygen isotope records
Open this publication in new window or tab >>Holocene climate and atmospheric circulation changes in northern Fennoscandia: Interpretations from lacustrine oxygen isotope records
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis investigates how variations in the oxygen isotopic composition of lake waters in northern Fennoscandia are recorded in lake sediment archives, especially diatoms, and how these variations can be used to infer past changes in climate and atmospheric circulation. Results from analyses of the oxygen isotopic composition of lake water samples (δ18Olakew) collected between 2001 and 2006 show that δ18O of northern Fennoscandian lakes is mainly controlled by the isotopic composition of the precipitation (δ18Op). Changes in local δ18Op depend on variations in ambient air temperature and changes in atmospheric circulation that lead to changes in moisture source, vapour transport efficiency, or winter to summer precipitation distribution. This study demonstrates that the amount of isotopic variation in lake water δ18O is determined by a combination of the original δ18Olakew, the amount and timing of the snowmelt, the amount of seasonally specific precipitation and groundwater, any evaporation effects, and lake water residence time. The fact that the same isotope shifts have been detected in various δ18Olakew proxies, derived from hydrologically different lakes, suggests that these records reflect regional atmospheric circulation changes. The results indicate that diatom biogenic silica isotope (δ18Odiatom) records can provide important information about changes in atmospheric circulation that can help explain temperature and precipitation changes during the Holocene. The reconstructed long-term Holocene decreasing δ18Op trend was likely forced by a shift from strong zonal westerly airflow (relatively high δ18Op) in the early Holocene to a more meridional flow pattern (relatively low δ18Op). The large δ18Olakew depletion recorded in the δ18O records around ca. 500 cal yr BP (AD 1450) may be due to a shift to more intense meridional airflow over northern Fennoscandia resulting in an increasing proportion of winter precipitation from the north or southeast. This climate shift probably marks the onset of the so-called Little Ice Age in this region.

Place, publisher, year, edition, pages
Stockholm: Department of Physical Geography and Quaternary Geology, Stockholm University, 2009. 30 p.
Series
Dissertations from the Department of Physical Geography and Quaternary Geology, ISSN 1653-7211 ; 18
Keyword
oxygen isotope, diatom silica, lake sediment, atmospheric circulation, North Atlantic Oscillation, northern Fennoscandia, The Holocene, Little Ice Age
National Category
Physical Geography
Research subject
Physical Geography
Identifiers
urn:nbn:se:su:diva-29343 (URN)978-91-7155-904-3 (ISBN)
Public defence
2009-10-02, De Geersalen, Geovetenskapens hus, Svante Arrhenius väg 14, Stockholm, 13:00 (English)
Opponent
Supervisors
Note
At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: In press. Paper 2: Submitted. Paper 5: In progress.Available from: 2009-09-10 Created: 2009-08-24 Last updated: 2010-04-22Bibliographically approved

Open Access in DiVA

fulltext(569 kB)961 downloads
File information
File name FULLTEXT01.pdfFile size 569 kBChecksum SHA-512
7966d3faca9c6c893287bd6962ce533a15c3b88d5bf2f6fe030c497f10feb72b8bdc09b302b805721fbb2a2007015a4e55df8819d39aeb5173458b071479c569
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Jonsson, Christina E.Rosqvist, Gunhild C.Seibert, Jan
By organisation
Department of Physical Geography and Quaternary Geology
In the same journal
Journal of Hydrology
Physical Geography

Search outside of DiVA

GoogleGoogle Scholar
Total: 961 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 123 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf