Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Study on Framing Effects in Risk Elicitation
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.
2005 (English)In: Proceedings of the International Conference on Computational Intelligence for Modelling Control and Automation (CIMCA), Vienna, 2005, 2005, 689-694 p.Conference paper, Published paper (Refereed)
Abstract [en]

Decision analysis tools are an effective way of structuring complex decision situations. However, their failure to incorporate reliable methods for elicitation is a shortcoming that needs to be dealt with. Since different elicitation methods have shown to yield different results, it is important to more thoroughly emphasize on aspects that can reduce biased results. The development of methods that explicitly recognize framing problems and aim to reduce these effects are needed. This study deals with framing problems within elicitation and how to reduce discrepancies between normative and descriptive behaviour in elicited risk data. The results indicate that the extra transitional state in one of the presentation formats, here referred to as Trade for, generated data that deviated more from normative rules when participants experienced gain prospects. On the other hand, for loss prospects the format more in line with normative rules depended on the presentation order of probabilities.

Place, publisher, year, edition, pages
2005. 689-694 p.
National Category
Social Sciences
Research subject
Computer and Systems Sciences
Identifiers
URN: urn:nbn:se:su:diva-38030DOI: 10.1109/CIMCA.2005.1631344ISBN: 0-7695-2504-0 (print)OAI: oai:DiVA.org:su-38030DiVA: diva2:305863
Conference
The International Conference on Computational Intelligence for Modelling Control and Automation (CIMCA), November 28 - November 30, 2005, Vienna, Austria
Available from: 2010-03-25 Created: 2010-03-25 Last updated: 2012-04-29Bibliographically approved
In thesis
1. A Prescriptive Approach to Eliciting Decision Information
Open this publication in new window or tab >>A Prescriptive Approach to Eliciting Decision Information
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The amount of information involved in many decision making situations has increased dramatically in recent years and support of some kind is often needed. Consequently, fields like Business Intelligence (BI) and Decision Support Systems (DSS) have advanced. Decision analysis applications belong to the latter category and aim to support decision making activities in businesses and organizations, and provide more clearly structured decision material to use as a basis for decisions. In spite of a belief in their potential, their employment is still limited in practice, which could partly be attributed to the fact that they are incomplete to support decision processes sufficiently in real settings. At present, e.g., the specification and execution of the elicitation of input data is often left to the discretion of the user. Yet, this involves quite a few problematic elements and is of importance for the quality of the process as a whole.

This thesis focuses on more practically useful elicitation of information in decision analysis applications than what is offered today. A process model emphasizing the importance of structured elicitation of adequate input data throughout decision processes is also suggested. In order to further define the problematic aspects of elicitation, three empirical studies were conducted. The problems with eliciting precise decision data suggests that using imprecise values within elicitation is a more realistic and useful approach to strive for. Based on theory and the findings of the studies, a weight elicitation method for imprecise statements and noisy input was formalized into the Cardinal Rank Ordering of Criteria (CROC) method. This method is both compatible with an adapted prescriptive decision making model, focused on a more structured elicitation component, as well as algorithms for dealing with such data. The CROC method was employed and validated in two real-life cases, which is not so common within decision analysis research.

Abstract [sv]

Mängden information i många beslutssituationer har ökat markant under senare år och det finns ofta behov av någon form av stöd. Följaktligen har områden som Business Intelligence (BI) och Beslutsstödssystem (BSS) avancerat. Beslutsanalysverktyg tillhör den senare kategorin och syftar till att fungera som stöd vid beslutsfattande inom företag och organisationer och tillhandahålla mer strukturerat underlag för beslut. Trots en tro på deras potential, så är deras användande begränsat i praktiken, vilket delvis kan tillskrivas det faktum att de är inkompletta för att stödja beslutsprocesser i tillräcklig utsträckning i verkligheten. För närvarande förutsätts, t.ex. ofta att användaren själv klarar av att specificera och utföra utvinningen (eliciteringen) av input data. Detta involverar dock ett antal problematiska delar och dess kvalité är av vikt för hela processen.

Denna avhandling fokuserar på mer praktiskt användbar elicitering av information i beslutsanalys-applikationer än vad som finns att tillgå idag. En processmodell som betonar vikten av strukturerad elicitering av adekvata indata genom hela beslutsprocessen föreslås också. För att ytterligare definiera de problematiska aspekterna av elicitering utfördes tre empiriska studier. Problemen med att utvinna precisa beslutsdata antyder att användandet av oprecisa värden inom elicitering är en mer realistisk och användbar ansats att sträva efter. Baserat på teori och resultaten av studierna formaliserades en vikteliciterings-metod för oprecisa utlåtanden och osäkra indata i Cardinal Rank Ordering of Criteria (CROC) metoden. Metoden är både kompatibel med en anpassad preskriptiv beslutsmodell fokuserad på en mer strukturerad eliciteringskomponent samt algoritmer för att hantera denna typ av data. CROC-metoden användes och validerades i två riktiga fall, vilket inte är så vanligt inom beslutsanalys forskning.

Place, publisher, year, edition, pages
Stockholm: Department of Computer and Systems Sciences, Stockholm University, 2012. 90 p.
Series
Report Series / Department of Computer & Systems Sciences, ISSN 1101-8526 ; 12-008
Keyword
Decision Analysis, prescriptive, elicitation methods, multi-criteria
National Category
Social Sciences
Research subject
Computer and Systems Sciences
Identifiers
urn:nbn:se:su:diva-75396 (URN)978-91-7447-517-3 (ISBN)
Public defence
2012-05-31, lecture room 401, Forum, Isafjordsgatan 39, Kista, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Accepted. Paper 7: Submitted. 

Available from: 2012-05-09 Created: 2012-04-17 Last updated: 2012-04-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Påhlman, Mona
By organisation
Department of Computer and Systems Sciences
Social Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 61 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf