Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Finding high-redshift dark stars with the James Webb Space Telescope
Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Show others and affiliations
2010 (English)In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 717, no 1, 257-267 p.Article in journal (Refereed) Published
Abstract [en]

The first stars in the history of the universe are likely to form in the dense central regions of similar to 10(5)-10(6) M-circle dot cold dark matter halos at z approximate to 10-50. The annihilation of dark matter particles in these environments may lead to the formation of so-called dark stars, which are predicted to be cooler, larger, more massive, and potentially more long-lived than conventional population III stars. Here, we investigate the prospects of detecting high-redshift dark stars with the upcoming James Webb Space Telescope (JWST). We find that all dark stars with masses up to 10(3) M-circle dot are intrinsically too faint to be detected by JWST at z > 6. However, by exploiting foreground galaxy clusters as gravitational telescopes do, certain varieties of cool (T-eff <= 30,000 K) dark stars should be within reach at redshifts up to z approximate to 10. If the lifetimes of dark stars are sufficiently long, many such objects may also congregate inside the first galaxies. We demonstrate that this could give rise to peculiar features in the integrated spectra of galaxies at high redshifts, provided that dark stars make up at least similar to 1% of the total stellar mass in such objects.

Place, publisher, year, edition, pages
2010. Vol. 717, no 1, 257-267 p.
Keyword [en]
dark ages, reionization, first stars; dark matter; galaxies: high-redshift; stars: Population III
National Category
Astronomy, Astrophysics and Cosmology
Research subject
Astronomy
Identifiers
URN: urn:nbn:se:su:diva-38219DOI: 10.1088/0004-637X/717/1/257ISI: 000278777900023OAI: oai:DiVA.org:su-38219DiVA: diva2:308046
Available from: 2010-04-01 Created: 2010-04-01 Last updated: 2017-12-12Bibliographically approved
In thesis
1. Searches for Particle Dark Matter: Dark stars, dark galaxies, dark halos and global supersymmetric fits
Open this publication in new window or tab >>Searches for Particle Dark Matter: Dark stars, dark galaxies, dark halos and global supersymmetric fits
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The identity of dark matter is one of the key outstanding problems in both particle and astrophysics. In this thesis, I describe a number of complementary searches for particle dark matter. I discuss how the impact of dark matter on stars can constrain its interaction with nuclei, focussing on main sequence stars close to the Galactic Centre, and on the first stars as seen through the upcoming James Webb Space Telescope. The mass and annihilation cross-section of dark matter particles can be probed with searches for gamma rays produced in astronomical targets. Dwarf galaxies and ultracompact, primordially-produced dark matter minihalos turn out to be especially promising in this respect. I illustrate how the results of these searches can be combined with constraints from accelerators and cosmology to produce a single global fit to all available data. Global fits in supersymmetry turn out to be quite technically demanding, even with the simplest predictive models and the addition of complementary data from a bevy of astronomical and terrestrial experiments; I show how genetic algorithms can help in overcoming these challenges.

Place, publisher, year, edition, pages
Stockholm: Department of Physics, Stockholm University, 2010. 84 p.
Keyword
dark matter, supersymmetry, gamma rays, dwarf galaxies, stellar evolution, cosmological perturbations, phase transitions, statistical techniques
National Category
Subatomic Physics Subatomic Physics Astronomy, Astrophysics and Cosmology Subatomic Physics Other Physics Topics Astronomy, Astrophysics and Cosmology Astronomy, Astrophysics and Cosmology
Research subject
Theoretical Physics
Identifiers
urn:nbn:se:su:diva-38221 (URN)978-91-7447-031-4 (ISBN)
Public defence
2010-05-04, FD5, AlbaNova universitetscentrum, Roslagstullsbacken 21, Stockholm, 15:15 (English)
Opponent
Supervisors
Note
At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Accepted. Paper 6: Submitted. Available from: 2010-04-12 Created: 2010-04-01 Last updated: 2010-04-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Zackrisson, ErikScott, PatRydberg, Claes-ErikÖstlin, Göran
By organisation
Department of AstronomyThe Oskar Klein Centre for Cosmo Particle Physics (OKC)Department of Physics
In the same journal
Astrophysical Journal
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 62 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf