Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Low temperature consolidated lead-free ferroelectric niobateceramics with improved electrical properties
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Materials Chemistry.
School of Engineering and Materials Science, Queen Mary University of London,.
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Materials Chemistry.
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Materials Chemistry.
Show others and affiliations
2010 (English)In: Journal of Materials Research, ISSN 0884-2914, E-ISSN 2044-5326, Vol. 25, no 2, 240-247 p.Article in journal (Refereed) Published
Abstract [en]

There is a concerted effort to develop lead-free piezoelectric ceramics. ((Na0.5K0.5)NbO3 based ceramics have good electrical properties, and are a potential replacement material for lead zirconate titanate piezoelectric ceramics. In this work a commercial powder based on (Na0.5K0.5)NbO3 with an initial particle size of 260 nm was consolidated by plasma sintering (SPS). To avoid volatilization, high mechanical pressures were used to minimize the densification temperature. It was found that under a uniaxial pressure of 100 MPa, fully densified compacts can be prepared at 850. Ceramics densified at such a low temperature demonstrate an unusually high remanent polarization (30 mC/cm2) and high d33 (146 pC/N). The improved ferroelectric properties are ascribed to the homogeneous, dense, and submicron grained microstructure achieved.

Place, publisher, year, edition, pages
Elsevier , 2010. Vol. 25, no 2, 240-247 p.
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-38660DOI: 10.1557/JMR.2010.0034ISI: 000274114400008OAI: oai:DiVA.org:su-38660DiVA: diva2:312384
Available from: 2010-04-23 Created: 2010-04-23 Last updated: 2017-12-12Bibliographically approved
In thesis
1. Spark Plasma Sintering Enhancing Grain Sliding, Deformation and Grain Size Control: Studies of the Systems Ti, Ti/TiB2, Na0.5 K0.5 NbO3, and Hydroxyapatite
Open this publication in new window or tab >>Spark Plasma Sintering Enhancing Grain Sliding, Deformation and Grain Size Control: Studies of the Systems Ti, Ti/TiB2, Na0.5 K0.5 NbO3, and Hydroxyapatite
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The unique features of the Spark plasma sintering (SPS) were used to investigate the sintering and deformation behaviour of titanium and titanium–titanium diboride composites, and to control the sintering and grain growth of ferroelectric Na0.5K0.5NbO3 (NKN) and of hydroxyapatite (HAp). In the SPS the samples experience a temperature different from that recorded by the thermocouple (pyrometer) used and this temperature difference has been estimated for Ti and NKN.

 

Sintering and deformation of titanium was investigated. Increasing heating rate and/or pressure shifted the sintering to lower temperatures, and the sintering and deformation rates changed when the α→β phase transition temperature was passed. Fully dense Ti/TiB2 composites were prepared. The Ti/TiB2 composites could be deformed at high temperatures, but the hardness decreased due to the formation of TiB. 

 

The kinetic windows within which it is possible to obtain fully dense NKN and HAp ceramics and simultaneously avoid grain growth are defined. Materials have a threshold temperature above which rapid and abnormal grain growth takes place. The abnormal grain growth of NKN is due to a small shift in the stoichiometry, which in turn impairs the ferroelectric properties. Fully transparent HAp nanoceramics was prepared, and between 900 and 1050 oC elongated grains are formed, while above 1050 oC abnormal grain growth takes place.NKN samples containing grains of the sizes 0.35–0.6 µm yielded optimum ferroelectric properties, i.e. a high remanent polarization (Pr = 30 µC/cm2) and high piezoelectric constant (d33= 160 pC/N). The ferroelectric domain structure was studied, and all grains exhibited a multi-domain type of structure.

Place, publisher, year, edition, pages
Stockholm: Department of Materials and Environmental Chemistry, Stockholm University, 2010. 81 p.
Keyword
Spark plasma sintering, plastic deformation, grain growth, titanium, TiB2, hydroxyapatite, Na0.5K0.5NbO3, ferroelectric, transparent
National Category
Materials Chemistry
Research subject
Materials Chemistry
Identifiers
urn:nbn:se:su:diva-38681 (URN)978-91-7447-072-7 (ISBN)
Public defence
2010-05-25, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 13:00 (English)
Opponent
Supervisors
Note
At the time of doctoral defense the following articles were unpublished and had a status as follows: Article 4: Manuscript; Article 5 : Manuscript Available from: 2010-05-04 Created: 2010-04-26 Last updated: 2010-04-27Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Eriksson, MirvaNygren, MatsShen, Zhijian
By organisation
Materials Chemistry
In the same journal
Journal of Materials Research
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 70 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf