Change search
ReferencesLink to record
Permanent link

Direct link
Effects of preferential hydrological pathways in a galciated watershed in the Northeastern USA
Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
2010 (English)In: Vadose Zone Journal, ISSN 1539-1663, E-ISSN 1539-1663, Vol. 9, no 2, 397-414 p.Article in journal (Refereed) Published
Abstract [en]

Despite observational evidence of lateral preferential flow paths in northeastern U.S. watersheds, their effects on the sources of runoff remain unclear. An intense field survey was undertaken during the 2007 growing season to determine the sources of stream runoff from a 2.51 km2 watershed in the Catskill Mountains, New York State. Lateral preferential flow paths are caused by groundwater springs and soil piping in this region. A two-component hydrograph separation using δ18O showed that event water (rain water) was a significant source of runoff during nine rainfall events (from July to October). With these rainfall events, 14 to 37% of the volume and 18 to 49% of the peak streamflow was attributable to event water. Further, end-member mixing analysis (EMMA), using δ18O, Si, and dissolved organic carbon (DOC), showed that saturated areas accounted for 2 to 24% of the total volume and 4 to 59% of peak streamflow but that groundwater was the dominant source of runoff volume during all events. Field surveys of saturated areas also suggested that near-stream areas were insufficient to generate the observed stream chemistry during rainfall events larger than 8 mm. A connection with the hillside saturated areas was therefore required to explain the results of the hydrograph separations, which were corroborated by the timing of the transient (perched) groundwater and overland flow. The hydrometric measurements confirmed that hillside lateral preferential flow paths rapidly transported water to near-stream saturation areas during runoff events under relatively dry antecedent conditions. A qualitative comparison with conventional techniques for distributing variable saturation areas (VSA) using surface topography and soil transmissivity (i.e., topographic index and soil topographic index), which do not consider the effects of lateral preferential flow paths, demonstrated that typical parameterizations (on the order of <10−1 m) would not have the spatial resolution to represent the measured lateral preferential flow paths (on the order of <10−3 m). Overall, the results suggest that the lateral redistribution of water from hillside areas reduces the influence of surface topography and channel topology on the sources of stream runoff, a finding that is consistent with recent ones from other landscapes where glacial soils have coevolved with the terrestrial hydrology.

Place, publisher, year, edition, pages
2010. Vol. 9, no 2, 397-414 p.
National Category
Natural Sciences
URN: urn:nbn:se:su:diva-40857DOI: 10.2136/vzj2009.0107ISI: 000277718000019OAI: diva2:326869
Available from: 2010-06-24 Created: 2010-06-24 Last updated: 2011-11-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Lyon, Steve
By organisation
Department of Physical Geography and Quaternary Geology
In the same journal
Vadose Zone Journal
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 48 hits
ReferencesLink to record
Permanent link

Direct link