Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Carbon dioxide adsorption on mesoporous silica surfaces containing amine-like motifs
Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
2010 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 87, no 9, 2907-2913 p.Article in journal (Refereed) Published
Abstract [en]

The postcombustion separation of CO2 from a flue gas mixture is a unit operation in carbon capture. Today, CO2 is normally separated with alkanolamines in aqueous solutions. These absorption processes are energy intensive and costly. Increased environmental considerations and the significant footprints of many energy sources warrant the development of new gas separation techniques for the competitive implementation of carbon capture and storage technologies. Improved adsorbent-mediated separation processes are candidates for such new low-energy low-cost processes. In this study, porous silica-based adsorbents with amine-like motifs were synthesized. The temperature- and pressure-dependent adsorption of CO2 and CO2/H2O mixtures were determined and compared for these materials. The experimental uptake capacities of the materials modified with primary propyl amine moieties were significantly higher than those of materials modified with bis-ethanol amine or amidine. The propyl-amine-modified samples also showed good selectivity for CO2 over nitrogen gas.

Place, publisher, year, edition, pages
2010. Vol. 87, no 9, 2907-2913 p.
Keyword [en]
Gas separation, Adsorption, Mesoporous, Carbon dioxide
National Category
Materials Chemistry Environmental Sciences
Research subject
Materials Chemistry
Identifiers
URN: urn:nbn:se:su:diva-43089DOI: 10.1016/j.apenergy.2009.06.008OAI: oai:DiVA.org:su-43089DiVA: diva2:353539
Conference
1st International Conference on Applied Energy, Hong Kong, PEOPLES R CHINA, JAN 05-07, 2009
Available from: 2010-09-27 Created: 2010-09-27 Last updated: 2017-12-12Bibliographically approved
In thesis
1. Synthesis and modification of potential CO2 adsorbents: Amine modified silica and calcium carbonates
Open this publication in new window or tab >>Synthesis and modification of potential CO2 adsorbents: Amine modified silica and calcium carbonates
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The prospect of rapid changes to the climate due to global warming is subject of public concern. The need to reduce the emissions of atmospheric green house gases and in particular carbon dioxide is greater than ever. Extensive research is performed to find new solutions and new materials, which tackles this problem in economically benign way. This thesis dealt with two potential adsorbents for post combustion  carbon capture, namely, amine modified silica and calcium carbonates. We modified porous silica with large surface area by propyl-amine groups to enhance the carbon dioxide adsorption capacity and selectivity. Experimental parameters, such as reaction time, temperature, water content, acid and heat treatment of silica substrate were optimized using a fractional factorial design. Adsorption properties and the nature of formed species upon reaction of CO2 and amine-modified silica were studied by sorption and infrared spectroscopy. Physisorbed and chemisorbed amount of adsorbed CO2 were, for the first time, estimated directly in an accurate way. The effects of temperature and moisture on the CO2 adsorption properties were also studied.

Crystallization of calcium carbonate as a precursor to calcium oxide, which can be used as carbon dioxide absorbent, was studied in the second part of this thesis. Structure of different amorphous phases of calcium carbonate was studied in detail. Crystallization of calcium carbonate with and without additives was studied. Parameters like stirring rate, temperature, pH and polymer concentration showed to be important in selection of phase and morphology. An aggregation mediated crystallization was postulated to explain the observed morphologies. 

Place, publisher, year, edition, pages
Stockholm: Department of Materials and Environmental Chemistry (MMK), Stockholm University, 2012. 87 p.
Keyword
Amine-modified silica, carbon capture, Fractional factorial design, IR spectroscopy, calcium carbonate
National Category
Materials Chemistry
Research subject
Materials Chemistry
Identifiers
urn:nbn:se:su:diva-75638 (URN)978-91-7447-516-6 (ISBN)
Public defence
2012-06-05, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 13:00 (English)
Opponent
Supervisors
Note
At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Accepted.Available from: 2012-05-10 Created: 2012-04-24 Last updated: 2012-04-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Aziz, BarozHedin, Niklas
By organisation
Department of Physical, Inorganic and Structural Chemistry
In the same journal
Applied Energy
Materials ChemistryEnvironmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 63 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf