Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electrostatic Origin of Salt-induced Nucleosome Array Compaction
Nanyang Technological University, Singapore.
Nanyang Technological University, Singapore.
Nanyang Technological University, Singapore.
Nanyang Technological University, Singapore.
Show others and affiliations
2010 (English)In: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 99, 1896-1905 p.Article in journal (Refereed) Published
Abstract [en]

The physical mechanism of the folding and unfolding of chromatin is fundamentally related to transcription but is incompletely characterized and not fully understood. We experimentally and theoretically studied chromatin compaction by investigating the salt-mediated folding of an array made of 12 positioning nucleosomes with 177 bp repeat length. Sedimentation velocity measurements were performed to monitor the folding provoked by addition of cations Na+, K+, Mg2+, Ca2+, spermidine3+, Co(NH3)63+, and spermine4+. We found typical polyelectrolyte behavior, with the critical concentration of cation needed to bring about maximal folding covering a range of almost five orders of magnitude (from 2 μM for spermine4+ to 100 mM for Na+). A coarse-grained model of the nucleosome array based on a continuum dielectric description and including the explicit presence of mobile ions and charged flexible histone tails was used in computer simulations to investigate the cation-mediated compaction. The results of the simulations with explicit ions are in general agreement with the experimental data, whereas simple Debye-Hückel models are intrinsically incapable of describing chromatin array folding by multivalent cations. We conclude that the theoretical description of the salt-induced chromatin folding must incorporate explicit mobile ions that include ion correlation and ion competition effects.

Place, publisher, year, edition, pages
2010. Vol. 99, 1896-1905 p.
National Category
Physical Chemistry
Research subject
Biophysics
Identifiers
URN: urn:nbn:se:su:diva-43579DOI: 10.1016/j.bpj.2010.07.017ISI: 000282197500027OAI: oai:DiVA.org:su-43579DiVA: diva2:358266
Available from: 2010-10-21 Created: 2010-10-21 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Lyubartsev, Alexander
By organisation
Physical Chemistry
In the same journal
Biophysical Journal
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 54 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf