References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Strong n-generators in some one-dimensional domainsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 1998 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: Department of Mathematics, Stockholm University , 1998. , 20 p.
##### National Category

Mathematics
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:su:diva-45754ISBN: 91-7153-751-1OAI: oai:DiVA.org:su-45754DiVA: diva2:369523
##### Public defence

1999-05-20, Sal 14, hus 5, Kräftriket, Roslagsvägen 101, Stockholm, 09:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
##### Note

Härtill fyra uppsatser.Available from: 2010-11-10 Created: 2010-11-10 Last updated: 2010-11-11Bibliographically approved

Let R be a commutative Noetherian one-dimensional domain such that each ideal in R can be generated by n elements. A strong n-generator in R is an element r which can be chosen as one of n generators for each ideal in which it is contained. If moreover r is contained in some ideal requiring n generators, then r is said to be a proper strong n-generator. We prove that if R is two-generated, then r is a strong two-generator if and only if r doesn't belong to Mˆ2 for any non-invertible maximal ideal M of R. Let S be an index set such that for each i in S, M(i) is a maximal ideal such that the localization of R at M(i) possesses an ideal requiring n generators. We show that there is a unique biggest M(i)-primary ideal I(i) in R requiring n generators. We prove that r is a strong n-generator if and only if r doesn't belong to I(i)M(i) for any i in S. Let R' be the integral closure of R. Suppose moreover that the conductor C of R' in R is non-zero. We prove that if n > 2, then r is a proper strong n-generator if and only if r belongs to the complement of I(i)M(i) in I(i) for some i in S. And if n = 2, then r is a proper strong two-generator if and only if r belongs to the complement of Mˆ2 in M for some non-invertible maximal ideal M of R or r belongs to some non-principal invertible maximal ideal of R. We prove that if C requires n generators, then R is n-generated and the extension of C to the localization of R at M(i) for some i in S requires n generators.

Suppose moreover that R is a Cohen-Macaulay ring, R possesses a superficial element and R' is a local domain. Then (R,M) is a local domain. Let B(M) be the blowing-up ring of R at M. We give an algorithm for determining the conductor J of B(M) in R. We determine the reduction exponent of M for a semigroup ring and give a sufficient condition for J not being a power of M.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});