Change search
ReferencesLink to record
Permanent link

Direct link
Warm water vapour in the sooty outflow from a luminous carbon star
Show others and affiliations
2010 (English)In: Nature, ISSN 0028-0836, Vol. 467, no 7311, 64-67 p.Article in journal (Refereed) Published
Abstract [en]

The detection(1) of circumstellar water vapour around the ageing carbon star IRC + 10216 challenged the current understanding of chemistry in old stars, because water was predicted(2) to be almost absent in carbon-rich stars. Several explanations for the water were postulated, including the vaporization of icy bodies (comets or dwarf planets) in orbit around the star(1), grain surface reactions(3), and photochemistry in the outer circumstellar envelope(4). With a single water line detected so far from this one carbon-rich evolved star, it is difficult to discriminate between the different mechanisms proposed. Here we report the detection of dozens of water vapour lines in the far-infrared and sub-millimetre spectrum of IRC + 10216 using the Herschel satellite(5). This includes some high-excitation lines with energies corresponding to similar to 1,000 K, which can be explained only if water is present in the warm inner sooty region of the envelope. A plausible explanation for the warm water appears to be the penetration of ultraviolet photons deep into a clumpy circumstellar envelope. This mechanism also triggers the formation of other molecules, such as ammonia, whose observed abundances(6) are much higher than hitherto predicted(7).

Place, publisher, year, edition, pages
2010. Vol. 467, no 7311, 64-67 p.
National Category
Natural Sciences
URN: urn:nbn:se:su:diva-48925DOI: 10.1038/nature09344ISI: 000281461200035OAI: diva2:376292
authorCount :37Available from: 2010-12-10 Created: 2010-12-10 Last updated: 2010-12-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Olofsson, Göran
By organisation
Department of Astronomy
In the same journal
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 19 hits
ReferencesLink to record
Permanent link

Direct link