Change search
ReferencesLink to record
Permanent link

Direct link
Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation
Show others and affiliations
2010 (English)In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 10, no 10, 4775-4793 p.Article in journal (Refereed) Published
Abstract [en]

We synthesised observations of total particle number (CN) concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300-2000 cm(-3) in the marine boundary layer and free troposphere (FT) and 1000-10 000 cm(-3) in the continental boundary layer (BL). Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2-10 greater than wintertime concentrations. We used these CN observations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R-2=0.46) but fail to explain the observed seasonal cycle (R-2=0.1). The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=-88%) unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=-25%). Simulated CN concentrations in the continental BL were also biased low (NMB=-74%) unless the number emission of anthropogenic primary particles was increased or a mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J, proportional to gas-phase sulfuric acid concentration to the power one) or kinetic-type mechanism (J proportional to sulfuric acid to the power two) with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R-2=0.3) than by increasing the number emission from primary anthropogenic sources (R-2=0.18). The nucleation constants that resulted in best overall match between model and observed CN concentrations were consistent with values derived in previous studies from detailed case studies at individual sites. In our model, kinetic and activation-type nucleation parameterizations gave similar agreement with observed monthly mean CN concentrations.

Place, publisher, year, edition, pages
2010. Vol. 10, no 10, 4775-4793 p.
National Category
Meteorology and Atmospheric Sciences
URN: urn:nbn:se:su:diva-48921DOI: 10.5194/acp-10-4775-2010ISI: 000278184700023OAI: diva2:376302

authorCount :34

Available from: 2010-12-10 Created: 2010-12-10 Last updated: 2015-04-23Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Krejci, Radovan
By organisation
Department of Applied Environmental Science (ITM)
In the same journal
Atmospheric Chemistry And Physics
Meteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 24 hits
ReferencesLink to record
Permanent link

Direct link