CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt185",{id:"formSmash:upper:j_idt185",widgetVar:"widget_formSmash_upper_j_idt185",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt187_j_idt190",{id:"formSmash:upper:j_idt187:j_idt190",widgetVar:"widget_formSmash_upper_j_idt187_j_idt190",target:"formSmash:upper:j_idt187:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Multivariate Polya-Schur classification problems in the Weyl algebraPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2010 (English)In: Proceedings of the London Mathematical Society, ISSN 0024-6115, E-ISSN 1460-244X, Vol. 101, p. 73-104Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2010. Vol. 101, p. 73-104
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:su:diva-49209DOI: 10.1112/plms/pdp049ISI: 000279483800003OAI: oai:DiVA.org:su-49209DiVA, id: diva2:376998
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt556",{id:"formSmash:j_idt556",widgetVar:"widget_formSmash_j_idt556",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt564",{id:"formSmash:j_idt564",widgetVar:"widget_formSmash_j_idt564",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt572",{id:"formSmash:j_idt572",widgetVar:"widget_formSmash_j_idt572",multiple:true});
##### Note

authorCount :2Available from: 2010-12-13 Created: 2010-12-13 Last updated: 2017-12-11Bibliographically approved

A multivariate polynomial is stable if it is nonvanishing whenever all variables have positive imaginary parts. We classify all linear partial differential operators in the Weyl algebra A(n) that preserve stability. An important tool that we develop in the process is the higher-dimensional generalization of Polya-Schur's notion of multiplier sequence. We characterize all multivariate multiplier sequences as well as those of finite order. Next, we establish a multivariate extension of the Cauchy-Poincare interlacing theorem and prove a natural analog of the Lax conjecture for real stable polynomials in two variables. Using the latter we describe all operators in A(1) that preserve univariate hyperbolic polynomials by means of determinants and homogenized symbols. Our methods also yield homotopical properties for symbols of linear stability preservers and a duality theorem showing that an operator in A(n) preserves stability if and only if its Fischer-Fock adjoint does. These are powerful multivariate extensions of the classical Hermite-Poulain-Jensen theorem, Polya's curve theorem and Schur-Malo-Szegocomposition theorems. Examples and applications to strict stability preservers are also discussed.

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1359",{id:"formSmash:j_idt1359",widgetVar:"widget_formSmash_j_idt1359",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1412",{id:"formSmash:lower:j_idt1412",widgetVar:"widget_formSmash_lower_j_idt1412",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1413_j_idt1415",{id:"formSmash:lower:j_idt1413:j_idt1415",widgetVar:"widget_formSmash_lower_j_idt1413_j_idt1415",target:"formSmash:lower:j_idt1413:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});