Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the Schur-Szegö composition of polynomials
Dept. of Mathematics, Univ. de Nice.
Stockholm University, Faculty of Science, Department of Mathematics.
2006 (English)In: Comptes rendus. Mathematique, ISSN 1631-073X, E-ISSN 1778-3569, Vol. 343, no 2, 81-86 p.Article in journal (Refereed) Published
Abstract [en]

The Schur-Szeg¨o composition of two polynomials of degree   n introduces an interesting semigroup structure on polynomial spaces and is one of the basic tools in the analytic theory of polynomials, see [5]. In the present paper we show how it interacts with the stratification of polynomials according to the multiplicities of their zeros and we present the induced semigroup structure on the set of all ordered partitions of n. 

Place, publisher, year, edition, pages
2006. Vol. 343, no 2, 81-86 p.
Keyword [en]
hyperbolic polynomials, Schur-Szegö composition
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:su:diva-49738DOI: 10.1016/j.crma.2006.06.007OAI: oai:DiVA.org:su-49738DiVA: diva2:379263
Available from: 2010-12-31 Created: 2010-12-17 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

fulltext(153 kB)204 downloads
File information
File name FULLTEXT01.pdfFile size 153 kBChecksum SHA-512
50d816a70d54f2a8a32d0452c6cdf9eec7a84de6526725037f36c1c0193a557254aab8e5203c230dcd446b0bced052e696ceab1b81300ac4a46de3cfbe30059f
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Shapiro, Boris
By organisation
Department of Mathematics
In the same journal
Comptes rendus. Mathematique
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar
Total: 204 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 58 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf