Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Inland hydro-climatic interaction: Effects of human water use on regional climate
Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
2010 (English)In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 37, no 18, L18402- p.Article in journal (Refereed) Published
Abstract [en]

This study has quantified the regional evaporation and evapotranspiration changes, and the associated latent heat flux and surface temperature changes in the Central Asian region of the Aral Sea drainage basin and the Aral Sea itself from the pre-1950 period of the 20th century to 1983-2002. The human water use for irrigation yielded an average regional cooling effect of -0.6 degrees C due to increased evapotranspiration and latent heat flux from the irrigated land. The runoff water diverted for irrigation was more than 80% of the pre-1950 runoff into the terminal Aral Sea, and was largely lost from the regional water system by the evapotranspiration increase. The Aral Sea shrank due to this water loss, resulting in decreased evaporation and latent heat flux from the pre-1950 Aral Sea area extent, with an average regional warming effect of 0.5 degrees C. In general, the endorheic (land-internal) runoff and relative consumptive use of irrigation water from that runoff determine the relative inland water area shrinkage, its warming effect, and to what extent the warming counteracts the cooling effect of irrigation. Citation: Destouni, G., S. M. Asokan, and J. Jarsjo (2010), Inland hydro-climatic interaction: Effects of human water use on regional climate.

Place, publisher, year, edition, pages
2010. Vol. 37, no 18, L18402- p.
Keyword [en]
regional climate, hydrological catchment, climate change, evapotranspiration, latent heat flux
National Category
Climate Research Physical Geography
Research subject
Physical Geography
Identifiers
URN: urn:nbn:se:su:diva-49433DOI: 10.1029/2010GL044153ISI: 000282318200005OAI: oai:DiVA.org:su-49433DiVA: diva2:379369
Note

authorCount :3

Available from: 2010-12-17 Created: 2010-12-14 Last updated: 2017-12-11Bibliographically approved
In thesis
1. Hydro-climatic changes in irrigated world regions
Open this publication in new window or tab >>Hydro-climatic changes in irrigated world regions
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Understanding of hydro-climatic changes in the world’s river basins is required to ensure future food security. Different regional basins experience different levels of hydro-climatic change depending on the endorheic or exorheic nature of a hydrological basin, along with the climatic conditions and human land and water-use practices, for instance for irrigation. This thesis has analyzed long-term hydro-climatic changes in two main irrigated regions of the world: the Mahanadi River Basin in India and the Aral region in Central Asia. Thesis applies a basin-wise, data-driven water balance-constrained approach to quantifying the hydro-climatic changes, and to distinguish their main drivers in the past century and for future. Results point at human water-use and re-distribution for irrigation within a basin as a major driver of water balance changes, which also affect surface temperature in the region.

Cross-regional comparison focused on the climatically important changes of water, vapor and latent heat fluxes at the land surface, and also on the changes to water resource availability in the landscape. Results show that irrigation- driven changes in evapotranspiration, latent heat fluxes and associated temperature changes at land surface may be greater in regions with small relative irrigation impacts on water availability in the landscape than in regions with severe such impacts. This implies that one cannot from the knowledge about only one aspect of hydro-climatic change simply extrapolate the impact importance of those changes for other types of water changes in a region.

Climate model projections results show lack of consistency in individual GCM performance with regard to temperature and to precipitation, implying difficulties to identify well-performing GCMs with regard to both of these variables in a region. In Aral region, the thesis shows that ensemble mean of different GCM outputs may provide robust projection of future hydro-climate changes.

Place, publisher, year, edition, pages
Stockholm: Department of Physical Geography and Quaternary Geology, Stockholm University, 2013. 30 p.
Series
Dissertations from the Department of Physical Geography and Quaternary Geology, ISSN 1653-7211 ; 36
Keyword
Climate change, hydro-climatic change, evapotranspiration, irrigation, water demand, water balance, land-use, water-use, hydrological catchment, Aral Sea, India, Mahanadi River Basin
National Category
Climate Research Physical Geography
Research subject
Physical Geography
Identifiers
urn:nbn:se:su:diva-87921 (URN)978-91-7447-641-5 (ISBN)
Public defence
2013-04-03, Nordenskiöldsalen, Geovetenskapens hus, Svante Arrhenius väg 12, Stockholm, 13:00 (English)
Opponent
Supervisors
Funder
FormasLinnaeus research environment CADICSModelling initiative of the Bert Bolin Centre for Climate ChangeSida - Swedish International Development Cooperation AgencySwedish Research Council, 2006-4366
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Accepted. Paper 6: Manuscript.

Available from: 2013-03-12 Created: 2013-02-25 Last updated: 2013-02-27Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Destouni, GeorgiaAsokan, Shilpa M.Jarsjö, Jerker
By organisation
Department of Physical Geography and Quaternary Geology
In the same journal
Geophysical Research Letters
Climate ResearchPhysical Geography

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 70 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf