References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

On higher heine-stieltjes polynomialsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2011 (English)In: Israel Journal of Mathematics, ISSN 0021-2172, E-ISSN 1565-8511, Vol. 183, no 1, 321-345 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2011. Vol. 183, no 1, 321-345 p.
##### Keyword [en]

Strebel differential, Heine-Stieltjes polynomials
##### National Category

Mathematical Analysis
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:su:diva-49776DOI: 10.1007/s11856-011-0051-3ISI: 000291804000011OAI: oai:DiVA.org:su-49776DiVA: diva2:379423
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
Available from: 2010-12-31 Created: 2010-12-17 Last updated: 2012-01-26Bibliographically approved

Take a linear ordinary differential operator d(z) = Pk i=1 Qi(z) di dzi with polynomial coefficients and set r = maxi=1,...,k(degQi(z) − i). If d(z) satisfies the conditions: i) r 0 and ii) degQk(z) = k + r we call it a non-degenerate higher Lam´e operator. Following the classical examples of E. Heine and T. Stieltjes we initiated in [6] the study of the following multiparameter spectral problem: for each positive integer n find polynomials V (z) of degree at most r such that the equation: d(z)S(z) + V (z)S(z) = 0 has a polynomial solution S(z) of degree n. We have shown that under some mild non-degeneracy assumptions on T there exist exactly `n+r n ´ spectral polynomials Vn,i(z) of degree r and their corresponding eigenpolynomials Sn,i(z) of degree n. Localization results of [6] provide the existence of abundance of converging as n ! 1 sequences of normalized spectral polynomials {eVn,in (z)} where eVn,in (z) is the monic polynomial proportional to Vn,in(z). Below we calculate for any such converging sequence {eVn,in(z)} the asymptotic rootcounting measure of the corresponding family {Sn,in (z)} of eigenpolynomials. We also conjecture that the sequence of sets of all normalized spectral polynomials {eVn,i(z)} having eigenpolynomials S(z) of degree n converges as n ! 1to the standard measure in the space of monic polynomials of degree r which depends only on the leading coefficient Qk(z).

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});