Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
ON TOTAL REALITY OF MEROMORPHIC FUNCTIONS
Department of Mathematics, Bilkent University, Bilkent, Ankara 06533, Turkey .
Stockholm University, Faculty of Science, Department of Mathematics.
IRMA, Universit´e Louis Pasteur, 7 rue Ren´e Descartes, 67084 Strasbourg Cedex, France.
Stockholm University, Faculty of Science, Department of Mathematics.
Show others and affiliations
2007 (English)In: Annales de l'Institut Fourier, ISSN 0373-0956, E-ISSN 1777-5310, Vol. 57, no 6, 2015-2030 p.Article in journal (Refereed) Published
Abstract [en]

We show that if a meromorphic function of degree at most four on a real algebraic curve of an arbitrary genus has only real critical points then it is conjugate to a real meromorphic function after a suitable projective automorphism of the image.

Place, publisher, year, edition, pages
2007. Vol. 57, no 6, 2015-2030 p.
Keyword [en]
total reality, meromorphic functions
National Category
Mathematics
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:su:diva-49786ISI: 000252868000010OAI: oai:DiVA.org:su-49786DiVA: diva2:379458
Available from: 2010-12-31 Created: 2010-12-17 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

fulltext(223 kB)51 downloads
File information
File name FULLTEXT01.pdfFile size 223 kBChecksum SHA-512
5625554434214f50102632fe87d6b02522b7f586e7a9aec8788f78c28028060da1ef9a599d214f7c9e1fc32bcff47481c5e5131dfbddc48fe94e3139ce6be143
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Ekedahl, TorstenShapiro, Boris
By organisation
Department of Mathematics
In the same journal
Annales de l'Institut Fourier
Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 51 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 62 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf