Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Detecting dyads of related individuals in large collections of DNA-profiles by controlling the false discovery rate
Stockholm University, Faculty of Science, Department of Genetics, Microbiology and Toxicology.
Stockholm University, Faculty of Science, Department of Genetics, Microbiology and Toxicology.
2010 (English)In: MOL ECOL RESOUR, ISSN 1755-098X, Vol. 10, no 4, 693-700 p.Article in journal (Refereed) Published
Abstract [en]

The search for pairs (dyads) of related individuals in large databases of DNA-profiles has become an increasingly important inference tool in ecology. However, the many, partly dependent, pairwise comparisons introduce statistical issues. We show that the false discovery rate (FDR) procedure is well suited to control for the proportion of false positives, i.e. dyads consisting of unrelated individuals, which under normal circumstances would have been labelled as related individuals. We verify the behaviour of the standard FDR procedure by simulation, demonstrating that the FDR procedure works satisfactory in spite of the many dependent pairwise comparisons involved in an exhaustive database screening. A computer program that implements this method is available online. In addition, we propose to implement a second stage in the procedure, in which additional independent genetic markers are used to identify the false positives. We demonstrate the application of the approach in an analysis of a DNA database consisting of 3300 individual minke whales (Balaenoptera acutorostrata) each typed at ten microsatellite loci. Applying the standard procedure with an FDR of 50% led to the identification of 74 putative dyads of 1st- or 2nd-order relatives. However, introducing the second step, which involved additional genotypes at 15 microsatellite loci, revealed that only 21 of the putative dyads can be claimed with high certainty to be true dyads.

Place, publisher, year, edition, pages
2010. Vol. 10, no 4, 693-700 p.
Keyword [en]
close-kin detection, DNA-profiles, LOD scores, multiple testing
Identifiers
URN: urn:nbn:se:su:diva-49909DOI: 10.1111/j.1755-0998.2010.02833.xISI: 000278676300012OAI: oai:DiVA.org:su-49909DiVA: diva2:380351
Note
authorCount :3Available from: 2010-12-21 Created: 2010-12-20 Last updated: 2010-12-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Berube, Martine
By organisation
Department of Genetics, Microbiology and Toxicology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 17 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf