Change search
ReferencesLink to record
Permanent link

Direct link
Atomic-Resolution Simulations Predict a Transition State for Vesicle Fusion Defined by Contact of a Few Lipid Tails
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
2010 (English)In: PloS Computational Biology, ISSN 1553-734X, E-ISSN 1553-7358, Vol. 6, no 6, e1000829- p.Article in journal (Refereed) Published
Abstract [en]

Membrane fusion is essential to both cellular vesicle trafficking and infection by enveloped viruses. While the fusion protein assemblies that catalyze fusion are readily identifiable, the specific activities of the proteins involved and nature of the membrane changes they induce remain unknown. Here, we use many atomic-resolution simulations of vesicle fusion to examine the molecular mechanisms for fusion in detail. We employ committor analysis for these million-atom vesicle fusion simulations to identify a transition state for fusion stalk formation. In our simulations, this transition state occurs when the bulk properties of each lipid bilayer remain in a lamellar state but a few hydrophobic tails bulge into the hydrophilic interface layer and make contact to nucleate a stalk. Additional simulations of influenza fusion peptides in lipid bilayers show that the peptides promote similar local protrusion of lipid tails. Comparing these two sets of simulations, we obtain a common set of structural changes between the transition state for stalk formation and the local environment of peptides known to catalyze fusion. Our results thus suggest that the specific molecular properties of individual lipids are highly important to vesicle fusion and yield an explicit structural model that could help explain the mechanism of catalysis by fusion proteins.

Place, publisher, year, edition, pages
2010. Vol. 6, no 6, e1000829- p.
National Category
Biochemistry and Molecular Biology
URN: urn:nbn:se:su:diva-49899DOI: 10.1371/journal.pcbi.1000829ISI: 000279341000035OAI: diva2:380434
authorCount :3Available from: 2010-12-21 Created: 2010-12-20 Last updated: 2010-12-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Lindahl, Erik
By organisation
Department of Biochemistry and Biophysics
In the same journal
PloS Computational Biology
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 21 hits
ReferencesLink to record
Permanent link

Direct link